

Super-Kamiokande

Masayuki Harada

On behalf of Super-Kamiokande Collaboration (<u>mharada@km.icrr.u-tokyo.ac.jp</u>)

ICRR young researchers' workshop @ICRR, Kashiwa 17-18th July 2024

Super-Kamiokande Location

Super-Kamiokande Detector

- Detector: Super-Kamiokande (SK)
 - 50 ktons water-based Cherenkov detector
 - From 2020, Gd is loaded
 - 50 cm PMT for ID \rightarrow Event reconstruction
 - 20 cm PMT for $OD \rightarrow Cosmic muon veto$

Super-Kamiokande Collaboration

~230 collaborators from 55 institutes in 11 countries

Super-Kamiokande **Physics target**

Multi-purpose detector: O(1)MeV — O(1) TeV

HE astrophysical ν

TeV

And other...

Super-Kamiokande Experimental phase

Super-Kamiokande Next stage "SK-Gd"

 $+ \sim 26$ tons Gd sulfate (SK-VII)

SK-Gd Enhanced neutron detection

Two times of loading Gd

2020: First time to ~0.01% Gd conc.

2022: Second time to ~0.03% Gd con

monitor by neutron from cosmic-muon

and time constant measurement

SK-Gd **Enhanced** neutron detection

Two times of loading Gd

monitor by neutron from cosmic-muon

Recent physics highlight

- My selection of SK recent physics highlight using Gd
 - Diffuse Supernova Neutrino Background (DSNB)
 - **Reactor neutrinos**
 - Atmospheric neutrinos

DSNB: flux prediction Major purpose of upgrading SK

$$\Phi_{\rm DSNB}(E) \propto \int R_{\rm SN}(z) \frac{dF_{\bar{\nu}}(E,z)}{dE} \left| \frac{dt}{dz} \right|^{\rm ACD} dz$$

SN rate

Depends on the star formation history e.g.) star formation rate, black hole formation, …

SN ν emission

Typical SN ν spectrum and neutrino physics e.g.) SN neutrino flux, oscillation,…

11

Differential flux upper limits Spectral-independent analysis

Highlight:

Tension from zero assumption Spectral-fitting analysis

Reactor neutrinos

- Sensitive to θ_{13} , also used sterile neutrino search
- Nearest reactor from SK ~ 150 km: 5 event/day
 - \rightarrow ~1/10 from before earthquake
- Very low energy (Peak at 4 MeV)
 - No measurement in Water-Cerenkov detector due to large background so far (except for evidence of SNO+)

-

Reactor neutrinos

First positive observation of reactor neutrinos in SK

First observation reactor neutrinos by SK, correlated reactor activity though small stat.

Atmospheric neutrinos

- Sensitive to MO, Δm_{32} , δ_{CP} , and θ_{23}
- Energy: ~100 MeV to TeV Enough cause hadronic interaction

Neutrino interaction \times Secondary interaction

Neutron signal is good for validate hadronic interaction and flavor difference

Atmospheric neutrinos Interaction validation and event reconstruction by neutron

- Interaction validation using neutron
 - Compare neutron multiplicity

Enable to do validation neutrino and hadronic interaction by atm. Neutrino events

Neutrino event reconstruction

Utilize to **reconstruct** neutrino direction and energy

Neutrino event reconstruction is improved

→ 10% increase to the mass ordering sensitivity

Production

Summary

- Producing physics result using Gd-neutron signal
- Some of the highlight (my selection)
 - DSNB: 2.3 σ rejection of null DSNB hypothesis
 - Reactor neutrinos:
 - Lowering IBD search energy threshold
 - First positive observation by $SK \rightarrow Achieving$ all oscillation source by SK
 - Atmospheric neutrinos:
 - not only oscillation but also interaction validation is enabled
 - Utilize neutron to reconstruct neutrino events

SK-Gd started from 2020, and currently operation continues with 0.03% Gd concentration

Neutrinos from Supernova Source of Diffused Supernova Neutrino

Core-Collapse Supernova (**CCSN**)

- Release ~10⁵³ erg of gravitational energies as neutrino emission
- Neutrino observation from CCSNe provides a lot of physics However, nearby CCSNe are very rare

DSNB: Detection How we can detect DSNB

- Roughly equal flux for all ν flavors
- Large volume is required to search DSNB due to its low flux and cross-section

Main channels

- Inverse beta decay: $\bar{\nu}_e + p \rightarrow e^+ + n$
 - Main channel for DSNB detection
 - Simple topology with one e+ and n
 - ➡ Coincidence detection reduces enormous background
- Charged current with nucleus: $\nu_e + N$
 - Subdominant channel for higher energy
- Neutral current with nucleus: $\nu_x + N$
 - Lower prob., but interact for all flavor

Latest analysis of SK-Gd Analysis improvement

SK-Gd continued observation and acquired additional 404 days with 0.03w% Gd (SK-VII) → Totally 956 days of SK-Gd data

Analysis Improvement (Santos et al., poster 637)

- Developed new reduction for NCQE event using gamma-ray cut variable
 - → Further reduced ~90% of NCQE
- Developed new neutron tagging methods based on multivriate analysis,
 - Search neutrons with 500 μs window → achieving **>60% efficiency** in SK-VII

DSNB search in SK-Gd Signal and background

Results SK-Gd energy spectrum

