

11th June, 2024

Hyper-Kamiokande

ICRR Young Researcher Workshop, 2024 July 17th Yohei Noguchi

Hyper-Kamiokande detector

- Next generation water Cherenkov detector in Kamioka, Japan.
- 258 kton water tank: fiducial mass ×8 larger than Super-K.
- 20,000 improved 50 cm PMTs to detect Cherenkov light.
 - 1,000 multi-PMTs, 3,600 3-inch OD PMTs

Photo sensor

(c) Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo

Hyper-Kamiokande project

- Joint project combining a large water Cherenkov detector and even more intense neutrino beam with the J-PARC accelerator.
- Upgraded near detectors constraining the neutrino beam before oscillation

Hyper-Kamiokande

(c) Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo

Near Detectors

Far detector 2.5° off the beam center

Physics targets at Hyper-Kamiokande

Many research topics approaching the "origins" of the matters and the universe using neutrinos.

Neutrino oscillation

- Accelerator + atmospheric neutrinos (Long Baseline):
 - CP violation as the "origin" of the matter dominant universe.
 - Mass ordering.
- Solar neutrinos:
 - Non-standard oscillations and interactions through matter effects in the electron neutrino disappearance.
- Neutrino astrophysics
 - Supernova burst and supernova relic neutrino: explosion mechanism, the "origin" of nuclei heavier than Fe, and star formation "history" of the universe.
- Nucleon decays
 - Evidence of the Grand Unified Theory.
 - The "origin" of the Standard Model of the elementary particles.

(c) Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo

Neutrino oscillation

b

Neutrino oscillations take place because of the flavor-mass mixing: •

$$U_{\text{PMNS}} = \begin{pmatrix} 1 & & \\ c_{23} & s_{23} \\ -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & s_{13}e^{-i\delta_{CP}} \\ 1 & \\ -s_{13}e^{i\delta_{CP}} & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} \\ -s_{12} & c_{12} \\ -s_{12} & c_{12} \end{pmatrix}$$
Various
baseline lengths
and energies Atmospheric- ν
Accelerator- ν
Accelerator- ν
Accelerator- ν
Accelerator- ν
 $\theta_{13} \sim 8^{\circ}$
Possible source of the baryon asymmetry
of the universe.
• Mass ordering: sign of Δm_{13}^2
• Need to see the matter effect.
• Need to see the matter effect.
 $\begin{pmatrix} c_{13} & s_{13}e^{-i\delta_{CP}} & c_{13} \\ -s_{13}e^{i\delta_{CP}} & c_{13} \end{pmatrix}$

 $(m_2)^2$

 $(m_{1})^{2}$

Accelerator neutrino oscillation experiment ⁶

- **CP-symmetry tested with** ν **-beam and** $\overline{\nu}$ **-beam enabled by the polarity of the focusing magnets.**
 - 2.5° off-axis arrangement focuses the neutrinos on the osc. maximum at 0.6 GeV.

Degeneracy between the δ_{CP} phase and the mass ordering in the beam neutrino.

• Need $\nu_{\mu} \rightarrow \nu_{e}$ with various travel lengths and energies $\rightarrow \underline{\text{atmospheric v data}}$

Accelerator neutrino oscillation sensitivities ⁷

For example, if we inject 1:3 ν : $\overline{\nu}$ beam in protons on the target...

- In the optimistic case (reduced systematics, known mass ordering):
 - 2-3 year data give 5 σ observation of the CP violation if true $\delta_{CP} = -\pi/2$.
 - After 10-year operation, CPC will be excluded with >5 σ for 60% of δ_{CP} values.

J-PARC accelerator + Near Detector suite

- Beam power upgraded 515 kW \rightarrow 1.3 MW with increased numbers of protons in <u>a bunch</u> and <u>faster repetition cycles</u>:
 - Reached peak power at 800 kW, achieved stable operation at 700 kW.
- **Upgraded Near Detectors:**
- Target detector with higher granularity and angular acceptance.
 - Aiming to improve physics models involving short tracks.
 - New SuperFGD and High-Angle TPC is now operational.
- Water Cherenkov detector 750 m downstream of the beam.
 - Excellent ν_e/ν_μ separation, same target nuclei as the far detector.

https://t2k-experiment.org/beyond-t2k/

Upgraded near detector

New water Cherenkov detector 750 m away from the ν -beamline

8

Long travel length in the earth results in greater matter effect.

Good chance to determine the mass ordering.

Atmospheric + beam neutrino oscillation ¹⁽

- Atmospheric neutrino oscillation helps the δ_{CP} measurement by resolving the degeneracy of δ_{CP} and the mass ordering in the beam data.
- After 10-year observation mass ordering will be determined with 4σ - 5σ .

Solar neutrinos

- The sun: ν_e disappearance experiment with extreme matter density.
 - Historically useful to study the Δm_{12}^2 -induced oscillations and mass hierarchy.

Totally unconstrained due to the lack of experimental data → Room for non-standard interactions or oscillations

HyperK can observe solar-v flux at 3σ-5σ for 3.5 MeV - 4.5 MeV.

Supernova neutrinos

Two interesting topics: supernova bursts and supernova relic neutrino.

Bursts: single explosion events

Model discrimination with detailed investigation of the time evolution and spectra.

Time evolution of SN- ν events

• Farther supernova explosions

<u>Relic</u>: accumulated SN- ν flux

 Constraints on evolution of the matter and the universe with detailed investigation of v-spectra.

SN- ν events with various detectors

Nucleon decays

- Direct evidence of Grand Unified Theory (GUT).
- World best sensitivity for many decay modes.
 - Including flagship modes: $p \to e^+ \pi^0$ and $p \to \bar{\nu} K^+$.

Larger water Cherenkov detector experiment is the unique solution for $\tau(p \rightarrow e^+ \pi^0) > 10^{35}$ years.

Hint to the GUT & SUSY scales by seeing both $p \to e^+ \pi^0$ and $p \to \bar{\nu} K^+$.

Excavation status

- Excavation progressing steadily.
- 6th bench of the barrel section completed.
- Will have completed by the end of this year.

Detector components

Readout electronics

Inner Detector PMT

Outer Detector system

Multi-PMT for ID (1k)

Inner Detector PMTs

- 20,000 50 cm (20") Box&Line PMTs.
- 2 times better efficiency, charge and timing resolution.
- 20% photo coverage (half of SuperK).
- Production ongoing:
 - 10,000 tubes delivered. Completed in Sep. 2026.
- Implosion Tests of the covers ongoing in Spain.

Electronics overview

- Front-end electronics is placed in underwater vessels.
 - Minimizing the length of the PMT cables
 - Digitization done in the 900 vessels.
 - Request failure rate of each component is <1%/10yr.</p>
- Analog FE designed to take full advantage of the improved PMT performance.
- Component developments shared by countries.

r b

Underwater vessel

ards

Data Processing Board

oower supp

Electronics schedule

٠

٠

٠

- Integrated tests being finalized for the mass production.
- Mass production, assembly, calibration & QA planned at CERN from 2025. Shipment to Kamioka and installation in parallel.

nkel											
Calendar year / items	2024					2025 crectr				Onio	2026
	1Q	2Q	3Q	40	ן ב	1Q	2Q	3Q	4Q	14	s schedin
Module assembly @ CERN & Transport to Kamioka								As	semb	ly &	transport
Digitizer	Component procurement F					Produ	oduction & transport				
	Calibration system prep) .	Test (QA) & Calibration				
Data processing board						Prod	uction	iction & delivery			
	Test system prep.						Test (QA)				
LV & HV module	Production										
	Test system prep.					Test (QA)					
Underwater vessel	procurement and production										
Electronics stand	Product				ctio	n					
Underwater PMT cables with]	Р	rocurer	nent	Dr	odu	ction	P. tra	ncnor	+	
feedthrough and connectors			(Tender)			Production & transport					
Feedthrough with power + fiber		Procurement			Dr	Production & transport					
cables & breakout fibers production		(Tender) (Tender)						Ispoi			
Long underwater fiber + power					Р	rocur	ement	Pro	ducti	on &	transport
cables with connector production						(Ten	der)	110	uuuun		. cransport

Ongoing tests of the electronics

- Requirements need to be satisfied with a realistic environment:
 - Assembled module in water.
 - With HK PMTs or a function generator.
- Almost all the requirements are confirmed:
 - Efficiency at high rate.
 - Charge and timing performance.
- Need to complete the measurements to move to the production.

<section-header>

Conclusions

- Hyper-Kamiokande is a next-generation large water Cherenkov experiment aiming for world-leading sensitivities to many aspects of the neutrino physics.
 - 5σ sensitivity to the CP violation in large fraction of the CP phase values as well as the mass ordering.
 - Useful information on star formation and supernova explosions by probing astrophysical neutrinos.
 - More sensitive test of Grand Unification by searching for proton decays.

- Construction of the detector is underway.
 - World-largest underground facility.
 - Production of the novel high-performant photo-sensors.
 - Finalization of the electronics design taking full advantage of them.
 - Gradual increase of the neutrino beam intensity and the near detector suite for better control of the systematic uncertainties.

Backup

Beam energy and oscillation probability

- 2.5 off-axis angle focuses the neutrinos on the first oscillation maximum, ~0.6 GeV.
- Advantages:
 - Oscillation probability depends on L/E. Energy reconstruction is essential.
 - Elastic scattering like (CCQE) events, which allows for precise energy reconstruction, are collected efficiently.

Charge and timing resolution of HyperK PM 23

- Charge resolution:
 - Evaluated with 1 photo-electron peak.
 - 2 times better resolution wrt SuperK.
- Timing resolution:
 - Transit time spread (e.g. FWHM of the transit time, time between light injection and electric signal.)
 - 2 times better resolution wrt SuperK.

Neutrino beam line at J-PARC

- [,] Muon neutrinos are generated by charged pion decays in flight.
- Magnetic horn focuses on either positive or negative pions.
- On-axis detector: beam monitors of muons and neutrinos.
- Off-axis detector: far detectors (SuperK, HyperK). Near detector characterizing the *v*-flux and the interactions before the oscillation

Recent T2K result

Near detector 280 m downstream

- Magnetized tracker placed 280 m downstream called ND280.
- Measures neutrino flux and interactions at the 2.5° off-axis angle.
- Target detector with higher granularity and 4π acceptance for short tracks.
- Start operating in June 2023.

Event in the upgraded ND280

Water Cherenkov detector at 750 m

- A new water Cherenkov detector will be constructed 750 downstream the beamline.
- Multi-PMT module (collection of 3" PMTs) as photo-sensors.
- Moving upward/downward covering 1°-4° off-axis angles.
- Precise measurement of ν_e / ν_μ difference thanks to the excellent ν_e / ν_μ separation of the water Cherenkov detector.

Multi-PMT module

