

XENON

XENONnT Dark Matter Experiment

Masashi YOSHIDA, Kamioka Observatory on behalf of the XENON collaboration

Jul. 17, 2024 ICRR young researchers' workshop

Dark Matter

- Invisible matter accounting for 1/4 of the energy density
- multiple/multiscale evidence of existence via gravitational observation
- particle nature is unknown Weakly Interacting Massive Particles (WIMPS)? axion ? dark photon?

Dark Matter Search

- DM rarely interacts with standard model particles.
- Three ways of DM detection: Accelerator, Indirect, Direct

Direct search

- DM local density 0.3 GeV/cm³
- Signal
 WIMP-nucleon elastic scattering
 → Nuclear recoil (NR)
 axion absorption/scattering
 → Electron recoil (ER)
- Background
 β / γ : ER
 n : NR

J. Phys. G43 (2016) 1, 013001& arXiv:1509.08767

Jul. 17, 2024, ICRR young researchers' workshop

Current Situation

Dual phase xenon TPC leads the field. •

LZ

XENON Collaboration

Jul. 17, 2024, ICRR young researchers' workshop

ASIA

TPC Detection Principle

Jul. 17, 2024, ICRR young researchers' workshop

S1: Scintillation

S2: Ionization

Three nested detectors

TPC 5.9 t LXe active target 1.3 m x 1.5 m diameter x height 494 PMTs 23 V/cm drift field 2.9 kV/cm extraction field Neutron Veto 33 t water Cherenkov detector ~1 around TPC 120 8" PMTs Muon Veto 700 t water 10 m x 10 m 84 8" PMTs sharing same water w/ nVeto

Neutron Veto

- **ICRR** contribution
- neutrons → NR background source resembling WIMPs
- Tagging neutrons by (n, γ) on H (or Gd)
- Started w/ pure water
- Gd load from 2023 Oct. techniques from EGADS/Super-K!

Stage	Gd ₂ (SO ₄) ₃ ·8H ₂ O concentration	n-tag eff.
SRO	0	53%
Current	500 ppm	77%

Liquid phase purification

ICRR contribution w/ Kavli IPMU

- Remove electronegative impurities
- Improve survival probability of drift electrons
 - \rightarrow > 90% even at the bottom of TPC
- One of the major update from Xenon1T

Slide by Y. Kaminaga, ICRR contribution

Estimation of ⁸⁵Kr BG using delayed coincidence count

- SR1: 2022 May. 2023 Aug.
- w/ source calibrations seeing detector stability
- SR2 is ongoing

Calibration

²²⁰Rn

SR0 ER result

XENONnT: PRL 129, 161805 (2022) XENON1T: PRD 102, 072004 (2020) LZ: PRL 131, 041002 (2023) PandaX-4T: PRL 129, 161804 (2022)

- 1.16 t·y exposure / 97.1 days livetime
- Consistent with the background model \rightarrow no sign of axions, dark photons, etc.
- Denied so called "Xenon1T Low ER Excess" with the world lowest BG index

PRL 131, 041003 (2023)

SR0 WIMP search result

	Nominal	Best Fit	
	ROI		Signal-like
ER	134	135^{+12}_{-11}	0.92 ± 0.08
Neutrons	$1.1^{+0.6}_{-0.5}$	1.1 ± 0.4	0.42 ± 0.16
$\mathrm{CE} \nu \mathrm{NS}$	0.23 ± 0.06	0.23 ± 0.06	0.022 ± 0.006
AC	4.3 ± 0.9	$4.4^{+0.9}_{-0.8}$	0.32 ± 0.06
Surface	14 ± 3	12 ± 2	0.35 ± 0.07
Total Background	154	152 ± 12	$2.03\substack{+0.17 \\ -0.15}$
WIMP	-	2.6	1.3
Observed	-	152	3

• 1.1 t·y exposure / 95.1 days livetime

Consistent with the background model → no sign of WIMPs

PRL 131, 041003 (2023)

SR0 WIMP Limit

Jul. 17, 2024, ICRR young researchers' workshop

First Measurement of CEvNS of Solar ⁸B Neutrinos

Component	Background only fit	Background + ⁸ B fit	Nominal Expectation
AC - SR0	7.55	7.36	7.48 ± 0.52
AC - SR1	18.26	17.90	17.77 ± 1.23
ER	0.74	0.54	0.68 ± 0.68
NR	0.50	0.45	0.47 ± 0.32
Total Background	27.05	26.24	26.4 ± 1.5
8B	-	10.71	11.9 ± 3.1
Observed		37	

- SRO+SR1
- 2.73σ significance
- reached neutrino fog!

IDM 2024

<u>Summary</u>

- ✓ XENONnT: dark matter direct detection experiment
 - Dual-phase xenon TPC \rightarrow fiducialization + NR/ER discrimination
 - Neutron Veto / Muon Veto
- ✓ Contribution from ICRR
 - Gd-water Cherenkov neutron veto: SK/EGADS technology
 - Liquid phase purification / purity monitor
 - ⁸⁵Kr background estimation
- ✓ SR0 results
 - BG modeling, Lowest ER BG, No excess in ER channel
 - O(10⁻⁴⁷) cm² upper limit for $10 100 \text{ GeV/c}^2 \text{ WIMPs}$
- ✓ SR0+SR1 result
 - First measurement of ⁸B solar neutrino CEvNS