Recent results from the LHAASO experiment

Songzhan Chen (chensz@ihep.ac.cn) on behalf of the LHAASO collaboration 2025.1.7@ICRR, University of Tokyo

The extreme Universe viewed in very-high-energy gamma rays 2024

LHAASO collaboration

318 researchers from **30** institutes of **5** countries.

LHAASO detectors

LHAASO arrays

The partial arrays since 2019 The full arrays since July 2021

WCDA VHE γ-ray detector 0.1 TeV-20 TeV KM2A

UHE γ-ray detector 10 TeV-10 PeV WFCTA+KM2A+WCDA Cosmic ray detector 10 TeV-100 PeV

Status of LHAASO

Arrays	Running time per year	Duty cycle	Good Detector ratio
KM2A	8743 h	99.5%	99.6% (ED)
			99.6% (MD)
WCDA	8384 h	95.4%	97.4%
WFCTA	1418 h		99.8%

KM2A Duty cycle >99%, 5 years data

Stable pointing and angular resolution

LHAASO for γ -ray astronomy

New update of LHAASO

The gamma-ray sources measurement using events with large zenith angles is also reliable according to checking using Crab Nebula.

LHAASO recent highlight results on Gamma-ray astronomy

The 1st LHAASO catalog

90 VHE sources with 32 new discoveries. 43 UHE (>100 TeV) sources

LHAASO coll. ApJS, 271:25 (2024)

LHAASO source types

Galactic sources

- Pulsar wind nebula/TeV halo
- SNR
- Binary (microquasar)
- Massive cluster
- **Extra-galactic sources**
 - Active galactic nucleus
 - GRB

Highlight 1: Microquasar

Attractive features of microquasars Black hole Accretion disk Relativistic jet

12 Galactic BH-jet systems within LHAASO FOV 5 systems with positive signals

Microquasar	Distance	LHAASO Source	Significance	Photon Index	Energy Range	Extension ^a	Flux ^b
	(kpc)		(σ)		(TeV)		(Crab Unit)
SS 433 E.	120	J1913+0457	9.7 ^c	2.78 ± 0.19	25 - 100	0.709	0.10
SS 433 W.	4.6 ± 1.3^{32}	J1910+0509	8.6 ^c	2.92 ± 0.21	25 - 100	0.70	0.082
SS 433 central		J1911+0513	9.8	4.03 ± 0.29	100 - 400	0.32°	0.32
V4641 Sgr	6.2 ± 0.7^{33}	J1819-2541	8.1	2.67 ± 0.27	40 - 1000	0.36°	3.9
GRS 1915+105	9.4 ± 0.6^{34}	J1914+1049	6.1	3.07 ± 0.15	25 - 630	0.33°	0.17
MAXI J1820+070	2.96 ± 0.33^{35}	J1821+0726	5.9	3.19 ± 0.29	25 - 630	$< 0.28^{\circ}$	0.13
Cygnus X-1	2.2 ± 0.2^{36}	J1957+3517	4.0	4.07 ± 0.35	25 - 100	$< 0.22^{\circ}$	< 0.01
XTE J1859+226	4.2 ± 0.5^{37}	-	1.9	-	—	-	< 0.03
GS 2000+251	2.7 ± 0.7^{38}	-	1.7	—	-	-	< 0.04
CI Cam	$4.1^{+0.39}_{-0.2}$	-	1.4	3-3	-	-	< 0.03
GRO J0422+32	2.49 ± 0.3^{40}	-	0.8		-	-	< 0.01
V404 Cygni	2.39 ± 0.14^{41}	-	0.5		-	-	< 0.02
XTE J1118+480	1.7 ± 0.1^{42}	-	0	-	-	-	< 0.01
V616 Mon	1.06 ± 0.1^{43}	-	0	-	-	-	< 0.01

Microquasar: SS 433

~4.6 kpc
 Morphology and SED is consistent with H.E.S.S. at <100 TeV
 New features at >100 TeV?

25-100 TeV above 100 TeV >100 TeV 1-25 TeV 1-25TeV 25-100TeV 5 12 10⁻¹ 10 SS 433 SS 433 Total * J1911+0513 Flux (erg cm⁻²s⁻¹) Flux (erg cm⁻²s⁻¹) 10⁻¹² J1913+0457 10⁻¹² □ J1910+0509 10⁻¹³ 10⁻¹³ **10**⁻¹⁴ 10-14 (e) (d) 10 100 1000 1000 10 100 Energy (TeV) Energy (TeV)

H.E.S.S. coll. 2024

LHAASO coll. arXiv:2410.08988

Microquasar: V4641 Sgr

~6.2 kpc , large zenith angle (55°<θ) in LHAASO, >8σ detection
 Hard spectrum up to 1 PeV, a super-PeVatron?
 Jet-like morphology?

Other microquasars

- UHE gamma-ray detection demonstrates that accreting BHjet system are extremely efficient accelerators.
 - **Questions:**
- Where and how the particle is accelerated?
 - Can it be the main factory for Galactic cosmic rays around knee?

LHAASO coll. arXiv:2410.08988

Highlight 2: Cygnus region

Cygnus X region (~1.4 kpc) is rich with potential particle accelerators. Extended (σ~ 2°) gamma-ray emission revealed in GeV-TeV

Fermi-LAT coll. 2011

ARGO-YBJ: 0.2-10 TeV

HAWC: 1-100 TeV

LHAASO identify a super PeVatron

Large UHE γ-ray bubble with a radius of 6° (~150pc)

- Larger than the Cygnus Cocoon(2°)
- SED is connected with Fermi-LAT for core region
- Associated with Molecular Clouds
- 8 photons >1 PeV
- 10 PeV cosmic ray super-PeVatron

Question:

Which source accelerate particles to such high energy?

LHAASO coll. Science Bulletin 69:449-457(2024)

Highlight 3: SNR as cosmic ray sources

SNRs are very important CR accelerators! What is the maximum energy that SNR can accelerate?

Fermi-LAT coll. 2013

MAGIC coll. 2017

LHAASO reveal SNR approaching PeV

SNR W51C : An interaction region between the cosmic rays and the dense molecular clouds.

•Underline cutoff energy of proton up to $E_{p,\text{cut}} = 385^{+65}_{-55} \text{ TeV}$

W51C:~30 kyr, 5.5 kpc

Highlight 4: evolution of PWNs

Most of the energetic pulsars >10³⁶ erg s⁻¹ within the FOV of LHAASO are associated with 1LHAASO sources.

The PWNe of energetic pulsars are effective VHE gamma-ray emitters.

Giacinti et al.(2020)

LHAASO coll. ApJS, 271:25 (2024)

Young PWN Crab Nebula

Crab Nebula: 1 kyr, ~2kpc

LHAASO coll. Science, 373:425 (2021)

UHE emission from CTA 1

CTA 1: 13.9 kyr, 1.4 kpc, 4.5 × 10³⁵ erg s⁻¹

LHAASO coll. SCIENCE CHINA: Physics, Mechanics & Astronomy (in press)

UHE emission from bow shock pulsar tail

Dec./deg

J1740+1000: 114 kyr, ~1.4 kpc, 2.32 × 10³⁵ erg s⁻¹

- The small morphology disfavors TeV halo scenario.
- Precise measurements offset from the pulsar and is located in the direction of its tail.
- Particle acceleration in pulsar tails ?

LHAASO coll. The innovation (in press)

Highlight 5: LHAASO extragalactic sources

Name	Note	Arrays	z	Туре
GRB 221009A	Science, Science Advances	WCDA+KM2A	0.151	GRB
Mrk 421	1 st catalog	WCDA+KM2A	0.031	Blazar(H)
Mrk 501	1 st catalog, Atel#16625	WCDA+KM2A	0.034	Blazar(H)
1ES 2344+514	1 st catalog	WCDA	0.044	Blazar(H)
1ES 1727+502	1 st catalog, Atel#16881	WCDA	0.055	Blazar(H)
1ES 1959+650	Atel#16437	WCDA	0.048	Blazar(H)
BL Lacertae	Atel#16850	WCDA	0.069	Blazar(I)
NGC 1275	MNRAS	WCDA	0.0176	FRI
M87	ApJL	WCDA	0.0044	FRI
NGC 4278	1 st catalog, ApJL	WCDA	0.002 (16.4Mpc)	Low luminosity AGN
IC 310	Atel#16513, Atel#16540	WCDA+KM2A	0.0189	AGN(unknown type)

LLAGN NGC 4278

First evidence for the Low-luminosity AGN with VHE γ-ray!

Radio Galaxy M87

The variability time ~1 day, a few Schwarzschild radii of BH in M87 The continuous monitoring reveals a duty cycle of ~1% for VHE flares

The BOAT GRB 221009A

LHAASO detect onset of the TeV afterglow for the first time ! Precise LC provides a unique opportunity to study the early afterglow physics !

The highest energy photon of GRB

The maximum energy photon from GRB ~12.5TeV

Hard SED challenge to GRB afterglow model SSC

Low EBL density (~40%) at $\lambda > 28 \mu m$

LHAASO coll. Science Advances,9: eadj2778 (2023)

LHAASO recent highlight results on New Physics Frontier

LHAASO constraints on dark matter

16 dwarf spheroidal galaxies

The strongest constraints on dark matter annihilation cross section

Name	$\log_{10}(J_{\theta}/{\rm GeV^2cm^{-5}})$	$\theta_{\rm anni}$ (deg)	$\log_{10}(D_{\theta}/{\rm GeVcm^{-2}})$	$\theta_{\rm decay}~({\rm deg})$
Draco	$18.96\substack{+0.16\\-0.15}$	1.0	$19.38\substack{+0.24\\-0.32}$	2.3
Ursa Minor	$18.79\substack{+0.12\\-0.11}$	1.0	$18.68\substack{+0.33\\-0.15}$	2.1
Ursa Major I	$18.40\substack{+0.28\\-0.27}$	0.9	$18.64_{-0.48}^{+0.50}$	1.8
Ursa Major II	$19.70\substack{+0.43\\-0.43}$	1.0	$19.41_{-0.57}^{+0.43}$	2.0
Bootes 1	$18.39\substack{+0.36\\-0.37}$	0.9	$18.77\substack{+0.40\\-0.54}$	1.8
Canes Venatici I	$17.43_{-0.15}^{+0.16}$	0.8	$18.19\substack{+0.40\\-0.39}$	1.3
Coma Berenices	$19.26_{-0.43}^{+0.35}$	0.9	$19.12\substack{+0.46\\-0.73}$	1.8
Leo I	$17.58\substack{+0.10\\-0.10}$	0.8	$18.44_{-0.42}^{+0.33}$	1.4
Segue 1	$19.25\substack{+0.60\\-0.69}$	0.8	$18.33\substack{+0.69\\-0.63}$	0.8
Sextans	$17.80\substack{+0.10\\-0.10}$	1.0	$18.49\substack{+0.28\\-0.21}$	1.8
Canes Venatici II	$17.82\substack{+0.38\\-0.37}$	0.8	$18.45\substack{+0.50\\-0.74}$	1.4
Hercules	$17.60\substack{+0.53\\-0.69}$	0.8	$17.79\substack{+0.62\\-0.61}$	1.0
Leo II	$17.72\substack{+0.18\\-0.17}$	0.8	$17.85_{-0.40}^{+0.62}$	1.0
Willman I	$19.80\substack{+0.50\\-0.52}$	0.9	$19.00\substack{+0.71 \\ -0.93}$	1.5
Aquarius 2	$18.57\substack{+0.50\\-0.57}$	1.1	$18.53\substack{+0.61 \\ -0.68}$	1.3
Leo T	$17.66_{-0.52}^{+0.55}$	0.8	$17.88\substack{+0.65\\-0.69}$	1.0

95% C.L. upper limits

LHAASO coll. PRL 133:061001 (2024)

Stringent Tests of Lorentz Invariance Violation

Using time lag of different energy from GRB 221009A. Improved by factors of 5–7 for both subluminal or superluminal

LHAASO coll. PRL 133, 071501(2024)

Summary

- LHAASO is operated very stable with full duty cycle since July 2021.
- LHAASO open-up a new UHE era with many new discoveries about Massive star, SNR, PWN, AGN, GRB and so on.
- LHAASO also throw light on the new physics frontier.
- There are still much more new interesting phenomena ahead!

LHAASO: 0.3TeV-10000TeV (2019-2021-now- 2040?)

Outlook: LHAASO upgrade plan LACT

- LACT improve the angular resolution <0.05°</p>
- LACT + KM2A muon detectors
 - → Better gamma-ray selection
- Construction: 2024.10 2028.9

Outlook : Future plans

More LHAASO results can be found from : http://english.ihep.cas.cn/lhaaso/

Thank you!