

SUSY dark matter searches at the LHC

Shion Chen (Kyoto University)

CTA Japan workshop 7-8 Jan 2025

The DM search trifecta

Production: collider

- Small uncertainty on the production rate
- Low mass reach at this point (100-700GeV)

Indirect Detection

Objective of this talk

Production: collider

Annihilation: indirect detection

My personal goal in the workshop:

- Understand the model coverage
- Figure out the commonality/complementarity of sensitivity

Dark matter we're looking for in LHC

Dark matter we're looking for in LHC

 $Others \rightarrow Coffee$

Why SUSY? → GUT

The extra particle content in SUSY will bend the running couplings.

Too good unification as an accident!

Unblinded >500 times and found nothing

But! GUT doesn't necessarily need TeV SUSY

mSUSY=1TeV mSUSY=10TeV

But! GUT doesn't necessarily need TeV SUSY and wino fraction $(2m(\tilde{\chi}_1^0) \sim m_7)$

Needs a separate motivation if one wants to search SUSY in experimential with $m(\tilde{\chi}_1) \gtrsim m(\tilde{\chi}_1) = 0$ where realistic reach is a few-O(10) TeV

boson pole.

compressed re

e.g. Dark matter <3TeV from relic abundance

* Others can be:

Naturalness

• Muon g-2 etc.

Dark matter candidates in SUSY

R-parity conservation (~SUSY number conservation)

→ Lightest SUSY particle (LSP) becomes DM if neutral

LHC - the SUSY farm

SUISSE

RANCE

S

CERN Prévessin

THE PROPERTY

CERN Meyrin

SPS_7 km

LHC - also cow farms

Example of a "bunch crossing"

- Center of mass energy: 13.6TeV (Run3)
- Colliding a pair of bunches of 10¹⁰ protons every 25ns (40MHz).
- Pile up: ~60 per bunch crossing

 $\sigma(\text{soft QCD}) >> \sigma(\text{interesting}) \rightarrow \text{Just look at the hardest collision}$

Time-scale vs Available data st

Run2 (13TeV) +Run3 (13.6TeV):
~140+200 fb⁻¹ available now
×10 by the end of HL-LHC

High luminosity LHC

Detector e.g. ATLAS

arXiv: 2305.16623

 \circ Inner tracker (innermost) → Calorimeter → Muon spectrometer (outermost) \circ Tight trigger requirement: ×1/40000 reduction in rate

Particle reconstruction

Particle reconstruction

Particle reconstruction

\circ Pair production

\circ Generate heavier state \rightarrow look for the products when decaying into LSP

- \circ Δm : Proxy of "hardness" of the observables
- \circ "Missing momentum" (p_T^{miss}) due to the LSPs escaping the detector
- Δm is typically small. Only soft particles in final state.
 - \rightarrow Require a hard ISR jet to trigger the event.

Run: 337215 $E^{miss}_{T} = 1.9 \text{ TeV}$ Event: 2546139368 $E^{miss}_{T} = 1.9 \text{ TeV}$ $2017-10-05 \ 10:36:30 \ CEST$ jet $p_{T} = 1.9 \ TeV$

30 CEST jet p_T = 1.9 TeV

How many events generated already?

• Most of the results so far are with the Run2 only dataset (140 fb⁻¹)

Neutralino DM scenarios @MSSM

LSP:= Lightest SUSY Particle

Wino LSP

• One charged wino + neutral wino in mass degenerate (~160MeV)

- \circ Very low-pT ("soft") pion from the decay → invisible
- Charged wino has macroscopic lifetime before decaying into the wino LSP

Wino LSP Search: Disappearing track

○ A charged wino directly interacts with the detector material → a track

○ Decays in the middle leaving a LSP & an non-reconstructable soft pion → disappearing

- \circ SM particles never leave such weird track \rightarrow clean
- BG events are from instrumental effects e.g. random crossing ("fake track")

ATLAS: <u>2201.02472</u> CMS: <u>2004.05153</u>

e.g. ATLAS

• Fake tracks are estimated by the fully-data driven estimation

- \circ Dedicated control region to enrich the fake $\rightarrow p_T$ template measurement
- Simultaneously fit to the data in the signal region with the signal template
- \circ No significant deviation from the BG is seen.
- Pure wino: ~700 GeV excluded with small model uncertainty.

Higgsino LSP

One charged + two neutral (the lighter one is LSP) in mass degenerate
 The degeneracy is very sensitive to the small mixing with the bino/wino
 ~300MeV (pure limit) — 10GeV (when bino/wino is ~500GeV)

Off-shell boson decays

 \rightarrow ISR jet + **soft leptons** + E_T miss

Slightly long-lived chargino

 \rightarrow ISR jet + soft displaced pion + E_T miss

Long-lived chargino

 \rightarrow ISR jet + **disappearing track** + E_T^{miss}

Higgsino LSP search (1): Soft leptons

ATLAS soft 2L:	<u>1911.12606</u>
ATLAS 3L:	<u>2106.01676</u>
CMS soft leptons:	<u>2111.06296</u>
CMS multi-lepton:	<u>2106.14246</u>

• Electron: p_T > 4.5 GeV / 5 GeV @ATLAS/CMS

• Muon: p_T > 3 GeV / 3.5 GeV @ATLAS/CMS

• Enormous challenge in rejecting & estimating the *fake lepton* contribution

ML-based isolation, data-driven estimation etc.

 \circ Exploiting the kinematic end-point in the di-lepton invariant mass: $m_{\ell\ell} <$ signal Δm

Higgsino LSP search (1): Soft leptons

ATLAS soft 2L:	<u>1911.12606</u>
ATLAS 3L:	<u>2106.01676</u>
CMS soft leptons:	<u>2111.06296</u>
CMS multi-lepton:	<u>2106.14246</u>

ATLAS 2-lepton signal regions

ATLAS 3-lepton signal regions

both 2L & 3L channels + both ATLAS & CMS sis (Δm =10-20GeV) <u>arXiv: 2404.12423</u>

ı~2GeV

Higgsino LSP search (2): Disappearing track

ATLAS: <u>2201.02472</u> CMS: <u>2004.05153</u>

- Same analysis as the wino search
- ° ~210GeV excluded (both in ATLAS and CMS)
- Tracklet requires >=4 hits in the inner detector (r>=125mm)
 - \circ Higgsinos average decay length ~ 11mm → challenging selection efficiency
 - Possibility of shorter tracklet reconstruction is being sought

- SUSY in ATLAS and CMS
- \circ Shorter higgsino lifetime: c τ =0.1-1mm
- But higher pion $p_T \sim 2-5 \text{GeV} \rightarrow \text{pion is now visible}$

Slight displacement from the primary vertex reflecting the Higgsinos lifetime

Impact parameter resolution @ATLAS: 0.01-0.1mm → distinct signature

Event selection

• ISR, large E_T^{miss} (>600GeV), $\Delta \phi(E_T^{miss}, soft track) < 0.4$ etc.

0.3 C

Higgsino LSP search (3): Soft displaced track

Main **BG**

• Tau decays

SUSY in ATLAS and CMS

- Long-lived hadrons from pileup jets, fractured protons

No significant excess found in the signal region

 \circ But first ever possible to set the limit in this Δ m region since LEP

Higgsino LSP search: Status @Collider

- Now that all Δ m ranges are finally covered \checkmark
- $\circ~$ Will try push the reach towards heavier side

• Bino does not have bino-SM-SM vertices (only bino-SUSY-SM vertices).

• Need some mechanisms to get non-zero annihilation cross-section.

Bino LSP - "Co-annihilation"

 \circ Challenging BG rejection since Δ m~100GeV signals have similar kinematics as SM processes (p_T ~ EW scale).

Bino LSP - "Co-annihilation"

ATLAS

 \sqrt{s} =13 TeV, 139 fb⁻¹ All limits at 95% CL

-- Expected Limit (± 1σ_{exp}) -- Observed Limit (± 1σ_{theo}

on, stau: very limited constraints yet

Exclusion 90-300 GeV

Bino LSP - "Z/h-funnel"

Bino LSP acquires some Higgsino component to annihilate when they are close in mass
 Large Δm is exceptionally allowed when m_{Bino} ~ m_Z/2 or m_{higgs}/2 (resonant annihilation)
 Only need very tiny higgsino admixture to achieve the correct annihilation xsec.
 Hadronic analysis with high-p_T boson jets addresses the best sensitivity
 tanβ>7 has been excluded where typically the nuclear recoil exp. struggles.

Long future projection: Wino LSP

Can possibly reach the 3TeV wino with HE-LHC / FCC-hh but generally on the verge
 Sensitivity strongly depends on the inner detector geometry, track reconstruction and pileup

Long future projection: Bino LSP

Snowmass 2021 energy frontier WG summary report: 2209.13128

Summary / Thoughts

LHC has a comprehensive search program on Wino/Higgsino/Bino LSP

- Current limit: wino < 700GeV, higgsino < 200GeV, bino < 100GeV-1TeV</p>
- \circ "Lowest-p_T" is the frontier to tackle the SUSY DM

Projection based on the current analysis:

• HL-LHC: Wino ~ 1.2TeV, Higgsino ~ 350GeV,

 $Bino \sim 0.8\text{-}1.5 TeV \text{ (gluino/squark-bino coann.) } 100 GeV \text{ (stau-bino coann.)}$

• May touch the thermal relic density limit with the FCC-hh for wino/higgsino

Bino LSP DM by the indirect search?

• Similar annihilation signals as wino/higgsino in principle

Full list of resultsATLAS:Publication / Preliminary / SummaryCMS:Publication / Preliminary / Summary

Sand ox Studio: Chicago with Steve Shahabruch

Diboson+MET Search: Overview

Small-Am: Multi-lepton

• Main BG: SM WZ

\circ For $\Delta m < 80$ GeV signals: on-shell Z-veto to reject WZ

- ATLAS: 3L, exploit kinematic end-point variables ($m_{\ell\ell}^{min}$, m_{T2}), BDT-based low- $p_T e/\mu$ isolation, ISR+MET category.
- CMS: Parametric NN for accommodating varying ∆m,3L and same-sign 2L category (one soft missing lepton).
- \circ For Δ m>80GeV signals: on-shell Z-tagging, requires high-m_T to reject WZ ATLAS: Multi-bin fit in MET/m_T/H_T CMS: Parametric NN

Intermediate-∆m: 2-lepton + 2 jets

ATLAS 2L+2J: <u>2204.13072</u> CMS 2LOS: <u>2012.08600</u>

Large-∆m: Hadronic

ATLAS all-hadronic: <u>2108.07586</u> CMS all-hadronic: <u>2205.09597</u>

Run: 284484 Event: 993033541 2015-11-03 12:20:12 CEST

An event in the ATLAS search signal region

More pheno arguments → More light SUSYs → Less-standalone DM searches

e.g. Muon g-2 explaining scenario

>=3 of (wino, higgsino, bino, left-handed smuon, right-handed smuon) need to be <O(1TeV).

e.g. Naturalness oriented spectra

Light higgsino, stop, gluino

More light SUSY particles \rightarrow More handles in the search

- \circ Larger Δ m, more prod. channels, longer cascade decays \rightarrow more final state objects, etc.
- Can do much better than the minimal DM-oriented SUSY search.

³He

本当にそんなprocess起こんのか?

○ LHCで反原子核の生成は確認。モデルの予想とも概ね合っている。が、W由来ではない (僕の理解)。

○ ALICEが反He3原子核と物質の対消滅断面積を測定。宇宙空間での減衰も大丈夫そうなのを確認。

○ やっぱWからの反原子核見たくないか?

高統計・pureなhadronicサンプルが必要 → ATLASのsemi-leptonic ttbar使う?

2b+1Lでほぼsemi-lep ttbarだけになるので,そこにdoubly-chargedな物体がいるかを見ればok

Prospects: Wino LSP/Pure-higgsino LSP (Disappearing track search)

Pion reconstruction of a $pp \rightarrow \tilde{\chi}_1^+ \tilde{\chi}_1$ interactions are not shown. The $\tilde{\chi}_1^+$ defined as the shown in the state of the shown is the state of the shown is the state of the shown is th 1.4 red makers). (soft-track) Figure 1: Illustration of a $pp \rightarrow \tilde{\chi}_1^T \tilde{\chi}_1$ at as Simulation $(\tilde{\chi}_1) = 95 \text{ GeV}^T$ jet interactionsimption of the second tracklets which shows the reconstruction of the second tracklets is possible that the second tracklets is possible to the second tracklets is pos **2DAC/lon**g shutdown between Run tracklets, serisicity at low such dece charge in officer use of these tracklets is possible thanks to LHC long shutdown between Run 1 and the signal processes and Set sitivity to smaller charging lifetimesd in This papersribed in section for the report section 3, the signal processes and backgi is given. The data samples also in this a Soft-track p_ [GeV] described in section 4. The reconstruction

<u>onstruction</u>

Proton Tagging Opportunities @ATLAS/CMS

LHC is also a photon collider

- \circ Fusion of two almost-on-shell photons spilled from the beam protons.
- \circ Substantial effective $\gamma\gamma$ luminosity: ~10^{29 (27)} cm⁻²s⁻¹GeV⁻¹ @ $\sqrt{s^{-1}00}$ GeV (1 TeV).

Diffracted beam protons stay intact \rightarrow Tag/measure using the forward detectors

- \circ Exclusive selection of $\gamma\gamma$ fusion events \rightarrow Much cleaner than the pp version of the search.
- \circ Full knowledge of center-of-mass 4-vector thanks to the forward proton tagging
 - → Direct access to $\sqrt{s^{-1}}$ instead Δm . No more pain from small- Δm .

Anticipated target: Slepton/Stau with $\Delta m = 10-50$ GeV.

 \circ Can already potentially close the "bino+slepton gap" with the Run3 statistics.

A few words on the Sneutrlino LSP

Sneutrinos are always right under left-handed slepton/stau

$$\begin{split} \tilde{\mu}_L, \tilde{\nu} & \longrightarrow \quad \tilde{\ell}_L^{\pm} \to \tilde{\nu} W^* \\ m_{\tilde{l}} - m_{\tilde{\nu}} &\approx \frac{m_W^2(-\cos 2\beta)}{m_{\tilde{l}} + m_{\tilde{\nu}}} \quad \text{Typically } \Delta m < 10 \text{ GeV} \end{split}$$

Not only because it's "dead" but its standalone search is genuinely hard in hadron colliers.

- \circ Small prod. cross-section: σ (slepton pair) ~ σ (higgsino chargino-neutralino)/20
- \circ Only the soft W*s will be visible.

Di-leptonic BR ~ 4%, $p_T(\ell) \sim \Delta m(\text{slep, sneu})/4$

Assuming the same acceptance as the higgsino search, no exclusion yet for >100GeV sleptons.

Much higher potential in lepton/photon colliders

Next minimal mass spectra scenarios are likely covered by the existing multi-lepton searches:

○ Signatures: Other SUSYs → slepton pair+X → 2L+sneutrino LSP pair+X

$m_{Bino} = m_H/2, m_A/2 \rightarrow Resonant bino annihilation via H/A$

General H/A \rightarrow SM particle resonance search would be the most sensitive channels.

Decays into down-type fermions become significant in the large tan β regime ($\sigma \propto tan^4\beta$)

No much motivation to start dedicate H/A \rightarrow RPC SUSY searches for now.

Will be important to determine SUSY's nature when they are found in the direct searches in the future.

Diboson+MET @ATLAS/CMS

Wino NLSP/Bino LSP simplified model Top: ATLAS / Bottom: CMS

C1N2→Wh

Summary

Soft b-tagging

Bottleneck of low-pT b-tagging: It doesn't form a 'jet' anymore

- \circ e.g. 5GeV initial b-quark → ΔR(final-state particles)~1.0, while standard jet clustering is with R=0.4.
- Also fewer final state particles due to the soft initial quark.

New dedicated algorithm based only on secondary vertex (SV) finding seeded by:

 \circ mildly displaced tracks isolated from jets (T-LVT), or

 \circ a system of collimated low-p_T tracks (TC-LVT).

• Optimized selection after the SV formation (e.g. mass, transverse displacement of SV)

Prospects: Bino LSP (other co-annihilation motivating ones)

Snowmass 2021 high-energy frontier working group summary report: <u>2209.13128</u>

Light-flavor squark → bino

Gluino → bino Search Method Run 2 extrapolation $\widetilde{g} \rightarrow q \overline{q} \widetilde{\chi}_1^0$ Run 2 extrapolation $m(\tilde{\chi}_1^0) = 0$ Run 2 extrapolation HL-LHC: 1.5-2 TeV Run 2 extrapolation compressed $\tilde{g} \rightarrow q \bar{q} \tilde{\chi}_{1}^{0}$ Run 2 extrapolation $m(\tilde{g}) - m(\tilde{\chi}_1^0) < 50 \text{ GeV}$ FCC-hh: 8-10 TeV Run 2 extrapolation Run 2 extrapolation ĝ→ttī̃χ₁⁰ Run 2 extrapolation $m(\widetilde{\chi}_1^0) = 0$ Run 2 extrapolation HL-LHC: 1.5-2.5 TeV Run 2 extrapolation compressed $\tilde{g} \rightarrow t\bar{t}\chi_1^0$ Run 2 extrapolation FCC-hh: 12 TeV Run 2 extrapolation $m(\tilde{g}) - m(\tilde{\chi}_1^0) < 50 \text{ GeV}$ 0.0 12.5 15.0 17.5 20.0 22.5 5.0 m(g) [TeV] — LHC Limits HL-LHC 14 TeV, 3 ab-1 FCC-hh 100 TeV, 30 ab-1 Range of estimates HE-LHC 27 TeV, 15 ab-

Stop → bino

Left-handed smuon → bino

150 GeV SUSY is viable!

Not even in a contrived way e.g.

- \circ (Pseudo-) pure higgsino LSP
- Compressed slepton-/stau-bino (muon g-2, bino DM co-annihilation)

Upcoming LHC-Run3 is exciting but just adding more data won't help much.

New schemes wanted! e.g. yy-collision, semi-long-lived signatures, loop?, bound-state?

