Synergy between high-resolution VLBI and VHE γ-ray observations in the study of AGN jets

The extreme Universe viewed in very-high-energy gamma-rays 2024 ICRR, Jan. 7-8 2025

Kazuhiro Hada (Nagoya City Univ. / NAOJ)

Outline

Brief introduction

• EHT+MWL observations of M87 jet

East Asia VLBI observations TeV AGN

TeV gamma-ray sky

- More than 25% of known TeV sources are extragalactic AGN
- Rapid TeV variability tiny sizes of emission region (light-days - light weeks), impossible to spatially resolve with current TeV instruments
- Virtually all TeV-detected AGN are bright in radio bands ("radio-loud")
 - Blazars (mainly HBL)
 - QSOs, Radio galaxies, LLAGN etc

High-resolution observations at radio wavelengths

Mrk501 Giroletti + 2004

Very long baseline interferometry (VLBI)

 $\theta = \lambda/D$

VLBI networks

VLBI @ mm

- λ ~ 0.87 1.3mm (230-345GHz)
- $\theta \sim 20$ micro-arcseconds
- Higher resolution, higher transparency

VLBI @ cm

- λ ~ 3mm 20cm (1-86GHz)
- $\theta \sim 1 0.1$ milli-arcseconds
- Higher sensitivity, larger FoV

A model of AGN jet

mm-VLBI

SMBH

Launching zone

7-

cm-VLBI

2-10-10³⁻⁵ RS

Acceleration & collimation zone

Expansion

Shocks

Disruption

Z- Kpc

EHT+MWL observations of M87

- EHT MWL Science WG et al. 2021
- EHT MWL Science WG et al. 2024

Astron Astrophys Rev (2024)32:5 https://doi.org/10.1007/s00159-024-00155-y

REVIEW ARTICLE

M 87: a cosmic laboratory for deciphering black hole accretion and jet formation

See also KH+2024 A&AR

Kazuhiro Hada^{1,2,3} · Keiichi Asada⁴ · Masanori Nakamura^{4,5} · Motoki Kino^{6,7}

M87

- Nearby FR-I (D=16.7 Mpc)
- Large SMBH ($M_{BH} = 6.5 \times 10^9 M_{sun}$)

In radio bands

- Spatially-resolved SMBH shadow
- Spatially-resolved relativistic jets from horizon to kpc scales

M87 as a γ-ray emitter

- One of few VHE detected radio galaxies
- Past VHE observations suggest:

Acciari+2009

- $R_{VHE} \sim a few \times Rs \,\delta \,\Delta t_{days}$
- In the 2008 VHE event, superluminal ejection from the VLBI core at jet base
- (At least part of) VHE emission must originate from the very vicinity of SMBH

A new era has begun in the MWL study of M87

EHT MWL Science WG et al. 2021

- Since 2017, EHT has joined the annual MWL campaign of M87
- Quasi-simultaneous MWL data including EHT images

 \rightarrow Scales of " R_{VHE} " can be spatially resolved & imaged !

Cumulative summary of EHT-MWL campaigns 2017-2024

Facility/Sources			Nº1		•			5	*A*					3	219				c	11281				30	213				4	ANOS	30			129	2ª		10	150		PHST	510	•	end	10.0	3 CB		GCAT	1055+018	PLACA 2	5.454.5	TTT100010	Dued	Carlo C
Year of Observation	17	18	21	22	24	17	18	3 21	1 22	2 23	24	17	18	3 21	2	2 23	3 24	1 17	7 1	8 2	1 22	2 17	18	21	22	23	24	17	18	21	22	23	21	22	23	24	18	21	22	18	22	17	21 2	2 7	22 2	23 2	23 2	4 2	1 2	22 2	23 7	13 2	1
EVN	1		I															1																							1												
VLA		1						1	1	1	1																			E																							
EAVN	1	1	1	1	1	1	1	1	1	1				1	1	1	1				1	1	1	1	I	1	i.	i	I.	1	1	1					1					1	1	1	1	1	1	1					
RadioAstron		1											1					1		Į.			1																														
VLBA	1	1	1	1	1		1		1	1	1	1	1	1		1	1	1			1	1	1	1	I	1	1	1	I.	1	I.	L	I.		1		L	1	I.	1	I.				1	1		1	1	1	1	1	
GMVA(+ALMA)	1	1	1	1	1	1	1			1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1	1	1	I		1	1		1	I.				1		1				1	1		J	1	1	L		
KVN	1	1	1	1		1	1	1	1	I		1	1	1		1		l.		E	1	1	1	I.	1	I.			I.	I.	I.	I.													1	1			1	1			
IRAM/POLAMI				1											1	1					1				1	1					1	1							I.		1				1	1				1		1	
VLT						1	1																																												1		
JWST										1	1																																										
HST	1	1		1																																																	
Lowell (Perkins/DCT)	1			1								1	1	1	1	1		1			1	1	ı.	I.	1	1		I.	I.	1	1	I.		ı.	I.				I.	1	1				1			I	1	1		1	
ATOM																		1																																			
Kanata		1	1		1									1		1	1		1		1		ı.	ı.	I.	1	I.			I.								I.	ı.	1	ı.				1	1		1	1				
A2T-8 + LX-200														1	1	1	1			1	1			I.	1	1	1			1								1	1	1	1					1		1	1	1	1	1	
Swift (XRT/UVOT)	1	1	1	1	1	1	1	1				1	1	1	1	1	1	1		1	1	1	1	1	1	1	1	T	I.				I.				1	1	1	1											1		
AstroSAT																		1			1																		1														
Chandra	1	1	1	1	1	1	1	1	1	1	1																																										
NuSTAR	i	1	1	1	1	1	1	1	1	1	1			1			1	1			1			1		1	1				ı.		ı.	ı.	ı.		ı.	ı.	ı.		ı.										1		
XMM	1								1		1																											1	1														
NICER														1										1																													
IXPE									1																														ı.														
INTEGRAL									1		1																							ı.	ı.				1					201									
Fermi	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1	1	1		1	1	1		l
HESS	1	1	1	1	1	1	1	1	1	1	1	1	1	1									-	-													-			-											1		
MAGIC	1	1	1	1	1	1	1	1	1			1	1							1																	1	1	1												1		
VEDITAC								1	1			1	100																								-																

Detection of a VHE γ-ray flare during EHT-2018

EHT MWL Science WG et al. 2024

- A VHE flare during EHT observations in April 2018 (↔ low state in 2017)
- Enhanced fluxes also from GeV/Fermi and the X-ray/Chandra core

How was at radio?

EHT (230GHz)

M87*

M87*

EAVN (43GHz)

- No significant flux enhancement or jet ejection at radio
 - Not able to pinpoint the exact location of TeV event
- Significant change in PA of both the EHT ring and jet between 2017 and 2018

Implications from SED

- EHT tightly constrains the size/location/flux/B-field of compact radio emitting region
- The observed radio-to-TeV SED cannot be modeled by one-zone models. Multiple components with different physical parameters required

2017&2018 SED data publicly available!

VHE

EHT

HE

- Another interesting candidate of TeV activities (e.g., 2005 event)
- Very weak in recent years, but continues repeated ejections of superluminal knots from the upstream edge

Evolving EHT network

Sensitivity upgrade & more frequencies

"Movie" campaign

EHT Collaboration 2024, arXiv

Mizuno et al

Enhancement of EHT array in coming years will greatly increase the chance to pinpoint the VHE site in M87!

Other EHT targets

...and more to come (OJ287, Mrk501 etc)

- EHT observes not only M87/SgrA* but also a number of bright radio sources (either as calibrators or PI-based targets). Many of them are known as active γ-ray sources
- EHT-MWL papers in preparation (3C279, OJ287 etc)

East Asia VLBI studies of TeV AGNs

VLBI arrays in East Asia

- EAVN is a combined VLBI network of VERA, JVN, KVN, CVN (& more)
- Mainly 22/43GHz but also 86GHz
 - Complementary to EHT
- Many advantages for AGN studies
 - Sub-mas angular resolution
 - High quality & sensitivity imaging
 - Regular monitoring throughout the year
 - Polarization
 - ToO supported
- Easy access for EA community

B0218+357

VLA image (Biggs+1999)

- A well-known GL blazar (z=0.944)
- One of the most distant TeV detected FSRQ

MWL campaign 2016-2020 (Acciari+2022, Hada+2020)

- GeV/X-ray/optical flares during the campaign
- KaVA revealed core-jet morphology of the lensed images
- At radio: no flux enhancement, no jet motion

 \rightarrow Multi-zone nature of the broadband emission

KaVA images also helped improve the lens modeling

Mrk421 & 501: probing the location of flaring sites with astrometry

(Niinuma+2015, Koyama+2016, 2019)

- VLBI can do micro-arcsec-precision astrometry of compact radio sources
- By doing VLBI astrometry near in time to high-energy flares, we can constrain the location of the flaring site in blazars

NGC1275 (3C84)

One of a few TeV-detected RG

Kino+ 2021

- Accumulated VLBI data reveal extremely complex nature of the nuclear region
 - Intermittent ejection of strong blobs
 - Strong interaction with surrounding medium
 - Double-core structure with curved jet launch
- Beaming factor may significantly evolve both in time and spatially

Prospects for VLBI-VHE synergy in CTA era

Summary

- High-resolution VLBI is a powerful partner for studying γ -ray AGN
- VLBI capability is rapidly evolving, uncovering the structure of SMBH & jet base in much greater detail than before
- Eager to collaborate with CTA Looking forward to new discovery!

