Development of a novel pulse generator system for the prototyping and testing of new trigger electronics for the ALPACA experiment

### Marcos Anzorena (ICRR) for the ALPACA collaboration anzorena@icrr.u-tokyo.ac.jp

Presentation Meeting of the Inter-University Research Program 2024 29/01/25

### The ALPACA collaboration



M. Anzorena<sup>1</sup>, E. de la Fuente<sup>2</sup>, K. Fujita<sup>1</sup>, R. Garcia<sup>1</sup>, K. Goto<sup>3</sup>, Y. Hayashi<sup>4</sup>, K. Hibino<sup>5</sup>, N. Hotta<sup>6</sup>, G. Imaizumi<sup>1</sup>, A. Jimenez-Meza<sup>2</sup>, Y. Katayose<sup>7</sup>, C. Kato<sup>4</sup>, S. Kato<sup>8</sup>, T. Kawashima<sup>1</sup>, K. Kawata<sup>1</sup>, T. Koi<sup>3</sup>, H. Kojima<sup>3</sup>, T. Makishima<sup>7</sup>, Y. Masuda<sup>4</sup>, S. Matsuhashi<sup>7</sup>, M. Matsumoto<sup>4</sup>, R. Mayta<sup>9</sup>, P. Miranda<sup>9</sup>, A. Mizuno<sup>1</sup>, K. Munakata<sup>4</sup>, Y. Nakamura<sup>1</sup>, M. Nishizawa<sup>10</sup>, Y. Noguchi<sup>7</sup>, S. Ogio<sup>1</sup>, M. Ohnishi<sup>1</sup>, S. Okukawa<sup>7</sup>, A. Oshima<sup>3</sup>, M. Raljevic<sup>9</sup>, H. Rivera<sup>9</sup>, T. Saito<sup>11</sup>, T. Sako<sup>1</sup>, T. K. Sako<sup>12</sup>, T. Shibasaki<sup>13</sup>, S. Shibata<sup>5</sup>, A. Shiomi<sup>13</sup>, M. Subieta<sup>9</sup>, F. Sugimot<sup>1</sup>, N. Tajima<sup>14</sup>, W. Takano<sup>5</sup>, M. Takita<sup>1</sup>, Y. Tameda<sup>15</sup>, K. Tanaka<sup>16</sup>, R. Ticona<sup>9</sup>, I. Toledano-Juarez<sup>2</sup>, H. Tsuchiya<sup>17</sup>, Y. Isunesada<sup>18</sup>, S. Udo<sup>5</sup>, R. Usui<sup>7</sup>, G. Yamagishi<sup>7</sup>, K. Yamazaki<sup>8</sup>, Y. Yokoe<sup>1</sup> (The ALPACA Collaboration)

<sup>1</sup>ICRR, University of Tokyo, <sup>2</sup>U. de Guadalajara, <sup>3</sup>Chubu University,
<sup>4</sup>Shinshu University, <sup>5</sup>Kanagawa University, <sup>6</sup>Utsunomiya University,
<sup>7</sup>Yokohama National University, <sup>8</sup> I. d'Astrophysique de Paris, Sorbonne U.,
<sup>9</sup>IIF, UMSA, <sup>10</sup> NII, <sup>11</sup>Tokyo Metropolitan College of Industrial Technology,
<sup>12</sup>Dept. of Info. and Elec., Nagano Pref. Inst. of Tech, <sup>13</sup>Nihon University,
<sup>14</sup>RIKEN, <sup>15</sup>Osaka Electro-Communication University,
<sup>16</sup>Hiroshima City University, <sup>17</sup>Japan Atomic Energy Agency, <sup>18</sup>Osaka Metropolitan University.

Pulse generator for ALPACA

### sub-PeV $\gamma$ -ray Astronomy

- First detection of sub-PeV  $\gamma$ -rays (Crab Nebula). Tibet AS $\gamma$ , PRL (2019)
- Detection of PeVatron candidate (G106.3+2.7). HAWC, ApJ (2020), Tibet ASγ, Nat. Astron. (2021)
- First detection of PeV Galactic diffuse  $\gamma$ -rays. Tibet AS $\gamma$ , PRL (2021)
- Detection of dozen PeV  $\gamma$ -ray sources. LHAASO, Nature (2021)



## Other Physics: Cosmic Ray observation



- 《圖》 《문》 《문》

æ

- Observation of CR anisotropy at both Hemispheres.
- Interplanetary space physics with Sun shadow of CRs
- Composition of Primary Cosmic-Ray Nuclei around knee region.

## ALPACA DAQ system

- Trigger system based on hit sum technique (timing coincidence).
- Hit signals arrive randomly to the trigger module.



Figure: ALPACA DAQ system

### Motivation: design new trigger system

- Digital system: flexibility, advance trigger method.
- Handle large number of channels.
- Pattern generator with timing and charge distribution is essential.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

### Previous results: 16 trigger system prototype — IURP 2022

- Digital trigger system hit sum technique.
- Prototype limited to 16 channel due to FPGA.



#### Pulse generator for ALPACA

### Previous results: 16 trigger system prototype — IURP 2022

- TDC results: Gaussian  $\mu = 255 \text{ ns}, \sigma = 60 \text{ ns}.$
- Trigger data: Obtained trigger rate with an input rate of 1.5 kHz.



### Towards a 64 channel pattern generator

- New dev board can manage large number of inputs (~ 120 channels).
- Combines CPU+FPGA on same IC (sophisticated algorithms).





### Figure: Old dev board

### Figure: New dev board

IURP 2024

- We received 20万円 from the ICRR Inter-University Research program.
- The budget was used to buy the ZCU104 dev board from Xilinx (  $\sim$  35万円).
- Thank you very much for your support.

# Developing an improved trigger technique

- Advanced trigger algorithm using CPU+FPGA.
- Take advantage of spatial correlations.



Pulse generator for ALPACA

IURP 2024

- Southern sub-PeV  $\gamma$ -ray sky is yet to be explored.
- ALPACA is a new air shower array under construction in Bolivia.
- We are developing new trigger electronics.
- Our design have the goal of processing large number of input channels (ALPACA Mega-ALPACA).
- A novel pattern generator system is being developed.
- The development of a new trigger technique is also being investigated.