Super-Kamiokande Results: Proton Decays and Atmospheric Neutrinos

Ryo Matsumoto (Science Tokyo) for the Super-Kamiokande collaboration 30 January 2025

Super-Kamiokande

- Water Cherenkov detector located 1000m underground in Gifu Prefecture (1996~).
- Tank with 40m diameter and height containing 50 kton of ultrapure water.
 - From 2020, SK-Gd project has been started (Gd concentration).
- Detect Cherenkov light from charged particle in water by 11000 light sensor on the wall.

線研究所 神岡宇宙素粒子研

Nucleon decay search

- Nucleon decay (signal events)
 - Observe particles from the decay of nucleons in water
 - Observe ~10³³ nucleons for ~10 years \rightarrow explore the lifetime up to ~10³⁴ years
- Cosmic ray muons (background)
- Atmospheric neutrino (background)
 - Large flux in the energy near the nucleon decay
 - Major background of nucleon decay
 - About 10 events/day in SK

Neutrino flux simulation

M. Honda *et al.*, Phys. Rev. D **83**, 123001 (2011).

0.75xV

Bartol Fluka

10

ور 10

 E_{V}^{2} (m⁻²s

10

10

Atmospheric neutrino

- Neutrinos are generated in the atmosphere.
- The energy is correlated with the cosmic ray. \rightarrow Large flux around 1 GeV.
- Events are classified into several categories to make the effect of the oscillation apparent, and parameters are fitted.

New results from Super-Kamiokande

- Nucleon decay analysis
 - Published: $p \rightarrow l^+ \eta$
 - $p \rightarrow \nu \pi^+$ and $n \rightarrow \nu \pi^0$
 - $n \rightarrow \nu K^0$
 - $p \rightarrow \mu^+ X$
 - $ppp \rightarrow e^+\pi^+\pi^+$
- Atmospheric neutrino oscillation analysis
 - Published: oscillation analysis with ntag and expanded FV in SK-I to V
 - Published: SK+T2K joint oscillation analysis

Search for $p \rightarrow \nu \pi^+$ and $n \rightarrow \nu \pi^0$

- Select events by using pion mass and momentum.
- Sensitivities with spectrum fit
- Expanded fiducial volume ($D_{wall} > 2m \rightarrow 1m$)
- The last publication is PRL 113, 121802 (2014)
- Increased statistics: SK-I to III (172.8kton·yr)→SKI-V (484.9kton·yr)
- Updated physics model (π FSI)
 - Increased π^{0} absorption (~30%)
- Estimation of systematic uncertainty, which was not taken into account in the previous analysis.
 - NC/CC ratio in ATM ν has impact on sensitivity.

Search for $p \rightarrow \nu \pi^+$ and $n \rightarrow \nu \pi^0$

Search for $n \to \overline{\nu} K^0$

- Select events by using K_S^0 invariant mass
 - Major K_L^0 decay mode is $K_L^0 \rightarrow \pi^{\pm} l^{\mp} \nu_l$. \rightarrow cannot reconstruct invariant mass
- The box cut analysis in the last publication (PRD 72 052007 (2005)) but larger BG \rightarrow Use spectrum fit for this analysis
- Increased statistics: SK-I (1489 days) → SK-I to V (6511 days)
- Improved π^+ reconstruction
- Lifetime limit > 7.8×10^{32} years (updated from 1.3×10^{32} years)

Total invariant mass

Search for $p \rightarrow \mu^+ X$

- X is a massless, neutral and invisible particle.
- Sensitivities with spectrum fit
- The last publication: PRL 115 121803 (2015)
- Increased statistics: SK-I to partial IV (4438 days)
 → SK-I to V (6511 days)
- Lifetime limit is 6.1×10^{32} years (updated from 4.1×10^{32} years)

Search for $ppp \rightarrow e^+\pi^+\pi^+$

- High energy pions make many secondaries due to hadronic interaction and make reconstruction complicated.
- Image classification based on CNN (MoblileNet v3) using Mercator projection
- Preselection cuts:
 - Events in the fiducial volume
 - 500 < visible energy < 2800 MeV
 - Number of rings = 3 or 4
 - Michel electron count = 1 or 2

Event display (simulation)

Search for $ppp \rightarrow e^+\pi^+\pi^+$

- Lifetime limit: $> 4.2 \times 10^{32}$ years
- Reference: $>1.2 \times 10^{26}$ years (GERDA, EPJC 83 778 (2023)) 11

published paper, PRD 109, 072014 (2024)

Atmospheric neutrino oscillation analysis w/ ntag and expanded FV in SK-I to V $\,$

n

р

- Including the last SK phase with pure water (SK-I to V).
- Neutron tagging (H capture).
 - Resonance appears in $\bar{\nu}$ with IO (opposite to neutrino mode). $\rightarrow \nu/\bar{\nu}$ separation contribute to MO.
- New multi-ring selection
- Expanded fiducial volume $(D_{wall} > 2m \rightarrow 1m)$

 \boldsymbol{n}

12

published paper, PRD 109, 072014 (2024)

Atmospheric neutrino oscillation analysis w/ ntag and expanded FV in SK-I to V

- Result with constraint $\sin^2 \theta_{13} = 0.0220 \pm 0.0007$ (PTEP 2022 083C01 (2022))
- Best fits:
 - $\delta_{CP} \sim -\pi/2$
 - $\Delta \chi^2_{I.0.-N.0.} \sim 5.69$
 - $\Delta m_{32}^2 \sim 2.4 \times 10^{-3} \text{ eV}^2$
 - $\sin^2 \theta_{23} \sim 0.45$
- Rejection of the inverted mass ordering is about 92.3%.

published paper, PRL 134, 011801 (2025)

SK+T2K joint oscillation analysis

- T2K is sensitive to Dirac CP.
 - SK is the far detector of the long baseline.

- Atmospheric neutrino analysis is sensitive to mass ordering.
- Dirac CP phase and mass hierarchy degenerate on $\nu_e/\bar{\nu}_e$. \rightarrow Joint fit among SK and T2K give better constraints.

published paper, PRL 134, 011801 (2025)

SK+T2K joint oscillation analysis

- Atmospheric ν sample: SK-I to IV (3244.4 days)
- 1.9 σ exclusion of CP conservation
- 1.2 σ exclusion of the inverted mass ordering.

Summary

- Published paper:
 - Search for $p \rightarrow l^+ \eta$
 - Oscillation analysis with neutron tagging and expanded FV in SK-I to V
 - Joint oscillation analysis (SK+T2K)
- Various proton decay modes were searched utilizing spectrum fitting.
 - $p \rightarrow \nu \pi^+$: 3.5×10^{32} years
 - $n \rightarrow \nu \pi^0$: 1.4×10^{33} years
 - $n \rightarrow \overline{\nu}K^0$: 7.8 × 10³² years
 - $p \rightarrow \mu^+ X$: 6.1 × 10³² years
- $ppp \rightarrow e^+\pi^+\pi^+$ was also searched using CNN for the complex hit patterns by high energy pions.
 - Lifetime limit at 90% CL: 4.2×10^{32} years

Backup

Final sample in $ppp \rightarrow e^+\pi^+\pi^+$ analysis

- One event in the final sample (SK-IV) with 29.8% Poisson probability
- Three electron-like
- One Michel electron
- Total invariant mass 1.289GeV
- Total momentum 889 MeV
- CNN prediction value=6.20 (>6.12)

#out										
#0ut	exp size	Opera	Input	Input	_					
16	-	conv	$24^2 \times 3$	$224^2 \times$						
16	16	bneck,	$2^2 imes 16$	$112^2 \times$						
24	64	bneck,	$2^2 imes 16$	$112^2 \times$						
24	72	bneck,	$5^2 \times 24$	$56^2 \times 2$						
40	72	bneck,	$5^2 \times 24$	$56^2 \times 2$. .		
40	120	bneck,	$B^2 \times 40$	$28^2 \times 4$		ages processed by a	Imag			
40	120	bneck,	$B^2 \times 40$	$28^2 \times 4$		g	oining	l coml	moo	
80	240	bneck,	$B^2 \times 40$	$28^2 \times 4$		ion.	ttenti	and a	CN	
80	200	bneck,	$1^2 \times 80$	$14^2 imes 8$		Images processed by a model combining CNN and attention. Convolutional layers extract features; attention identifies feature relationships. Enables the model to recognize inter-feature connections gradually.	Cor			
80	184	bneck,	$1^2 \times 80$	$14^2 imes 8$		yers	iai iay	st faat		
80	184	bneck,	$1^2 \times 80$	$14^2 imes 8$			ures,		extr	
112	480	bneck,	$1^2 \times 80$	$14^2 imes 8$			entitie	tion id	atte	
112	672	bneck,	$^2 imes 112$	$14^2 imes 1$		hips.	tionsh	re rela	feat	
160	672	bneck,	$^2 imes 112$	$14^2 imes 1$		del to	mod	es the	Ena	
160	960	bneck,	imes 160	$7^2 imes 16$				nize	reco	
160	960	bneck,	imes 160	$7^2 imes 16$			ڊ د	featur	inte	
960	-	conv2d	imes 160	$7^2 imes 16$		vlleub	σrad	octions	con	
-	-	pool,	× 960	$7^2 imes 96$		auany.	Brau		con	
1280	N -	conv2d 1×	× 960	$1^2 imes 96$						
k	N -	conv2d 1×	imes 1280	$1^2 imes 12$						
16 16 24 24 40 40 40 80 80 80 80 80 80 80 80 80 80 112 112 160 160 160 960 - 1280 k	- 16 64 72 72 120 120 240 200 184 184 480 672 672 960 960 960 960 - - - N - N -	conv bneck, bneck, bneck, bneck, bneck, bneck, bneck, bneck, bneck, bneck, bneck, bneck, bneck, conv2d pool, conv2d 1x conv2d 1x	$24^2 \times 3$ $2^2 \times 16$ $2^2 \times 16$ $2^2 \times 24$ $3^2 \times 24$ $3^2 \times 40$ $3^2 \times 40$ $3^2 \times 40$ $3^2 \times 40$ $3^2 \times 80$ $4^2 \times 80$ $4^2 \times 80$ $4^2 \times 80$ $4^2 \times 112$ $2^2 \times 112$ $2^2 \times 112$ $2^2 \times 160$ $\times 160$ $\times 160$ $\times 960$ $\times 960$ $\times 1280$	$\begin{array}{c} 224^2 \times \\ 112^2 \times \\ 112^2 \times \\ 56^2 \times 2 \\ 56^2 \times 2 \\ 28^2 \times 2 \\ 28^2 \times 2 \\ 28^2 \times 2 \\ 14^2 \times 8 \\ 14^2 \times 8 \\ 14^2 \times 8 \\ 14^2 \times 1 \\ 7^2 \times 16 \\ 7^2 \times 16 \\ 7^2 \times 16 \\ 7^2 \times 96 \\ 1^2 \times 96 \\ 1^2 \times 12 \end{array}$		d by a g ion. yers ies hips. del to dually.	essed bining ttentional lay ures; entific tionsh mode grad	es proc l com and a olutior ct feat tion id re rela es the nize featur ections	Ima mod CNI Cor extr atte feat Ena reco inte con	

Table: MobileNet V3 Architecture

published paper, PRD 110, 112011 (2024)

Search for $p \to l^+ \eta$

- The last publication: PRD 96 012003 (2017)
- Increased statistics:
 SK-I to partial IV (5145 days)
 → SK-I to IV (6050 days)
- Updated physics model $(\eta N \text{ cross section})$
 - Reduced uncertainty to signal efficiency $\sim 30\% \rightarrow \sim 10\%$

published paper, PRD 110, 112011 (2024)

Search for $p \rightarrow l^+ \eta$ *p*→e⁺η (3π⁰) *p*→e⁺η (2γ) *p*→*μ*⁺η (2γ) $p \rightarrow \mu^+ \eta (3\pi^0)$ Efficiency [%] 1 10³ 10² Events 10⁻ 10 A4A5A6A7A8A9 A1 A2 A3 A4 A5 A6 A7 A8 A9 **B2 B5 B2 B4** B5 B6 **B1 B6 B1** B3 Lifetime limit **Event Selection**

- $e^+\eta$: > 14.0 × 10³³ years (updated from 10 × 10³³ years)
- $\mu^+\eta$: > 7.3 × 10³³ years (updated from 4.7 × 10³³ years)

Atmospheric neutrino oscillation analysis w/ ntag and expanded FV in SK-I to V

