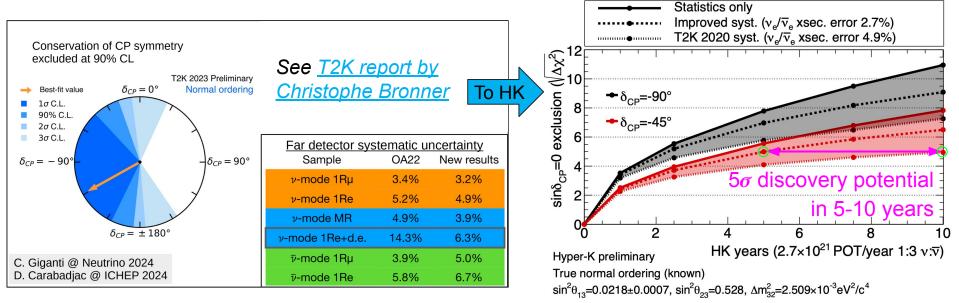
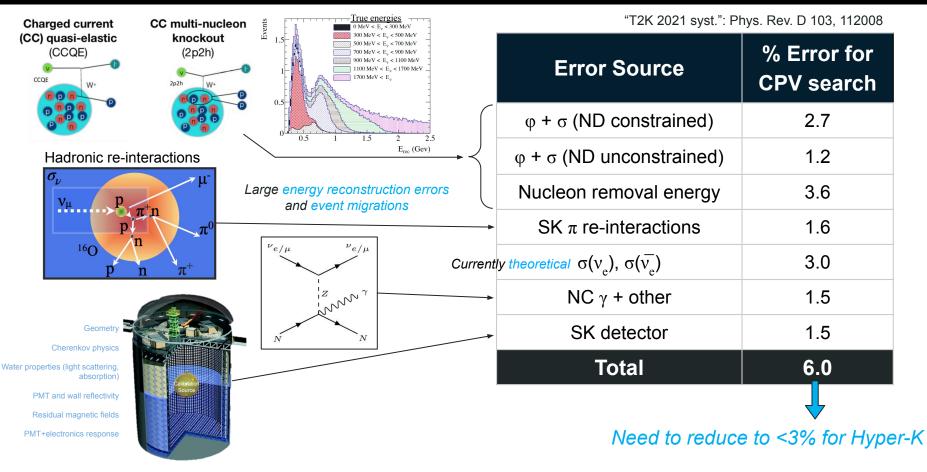

ICRR Inter-University Research Program FY2024 Neutrino and Astroparticle Research Division

1) New Photogrammetry Calibration for Super-Kamiokande and Hyper-Kamiokande 2) Water Purification System R&D for **Precision Neutrino Detectors** Patrick de Perio

January 29, 2025 **IPMU & TRIUMF**


Hyper-Kamiokande: Long-Baseline Neutrino Experiment


ICRR IURP, Jan. 29, 2025

Motivation

- CP violation discovery in neutrino oscillation will become systematics limited in HK
- 10 years to reach 5σ discovery potential with our current (T2K) systematic errors
- 5 years if we can improve our understanding substantially
 - Also giving more robust and trustable result

Neutrino Oscillation Systematic Error Breakdown

Systematic Error Mitigation Strategies

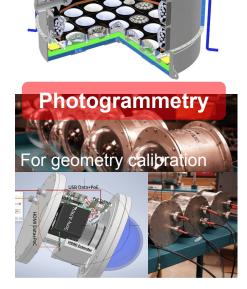
Water Cherenkov

Test Experiment

(WCTE)

Intermediate Water **Cherenkov Detector** (IWCD)

 $OAA = 4^{\circ}$

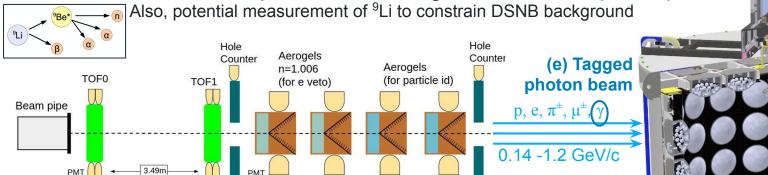

Moveable to scan varying v energy spectra

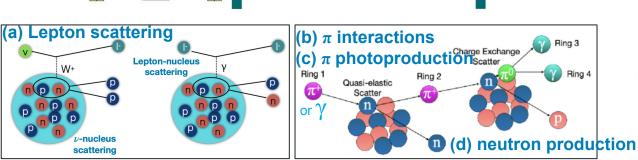
~42 m

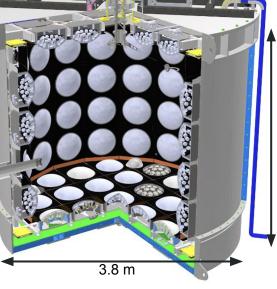
Error Source	Mitigation		
ϕ + σ (ND constrained)	IWCD		
ϕ + σ (ND unconstrained)	IWCD		
Nucleon removal energy	IWCD		
SK π re-interactions	WCTE		
$\sigma(v_e), \ \sigma(v_e)$	IWCD		
NC γ + other	IWCD, WCTE		
SK detector	Photogrammetry		

Also for IWCD, WCTE and HK FD

ICRR IURP contributes to *improving all errors sources!*




~10 m $OAA = ~1.6^{\circ}$


ICRR IURP, Jan. 29, 2025

The Water Cherenkov Test Experiment (WCTE)

- Prototype of IWCD @ CERN, demonstrator for:
 - New mPMT photosensors (including FD's) Ο
 - Calibration: source deployment, photogrammetry, laser light injector 0
 - AI/ML technology: e/γ discrimination for potential NC γ measurement in IWCD (e) Ο
- Constrain neutrino experiment modeling for SK and HK (below)

ICRR IURP, Jan. 29, 2025

scattering

W+

<u>3</u>.6 ⊐

1) Photogrammetry Funding Details

- 2019 Goods: Drone, cameras and lamps, deployment hardware .
- 2019 Travel: Detector survey and reporting at collaboration meetings
- 2020 Travel: Shipping to Canada to continue calibrations
- 2021 Goods: Underwater red LED lamp

- 2022 Goods: Pressure testing equipment
- 2022 Travel: Pressure testing camera vessels at Kamioka Lab-F
- 2023: Underwater acoustic locator, rental of pool facility for testing

- 2024 Goods: Shipping of computer, lamps, and water system components
 - Remainder to be spent on cable reels for underwater acoustic positioning system Ο

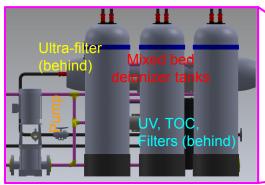
, total openang (1).			*Carried over	
Year	Goods	Travel	Total	Remainder
2019	832,236	653,170	1,485,406	14,594
2020	0	127,739	127,339	372,261*
2021	872,234	0	872,234	0
2022	124,309	156,940	281,249	168,751*
2023	518,751	0	518,751	0
2024	310,860	0	310,860	39,140

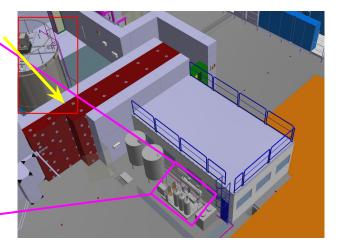
Actual spending (¥):

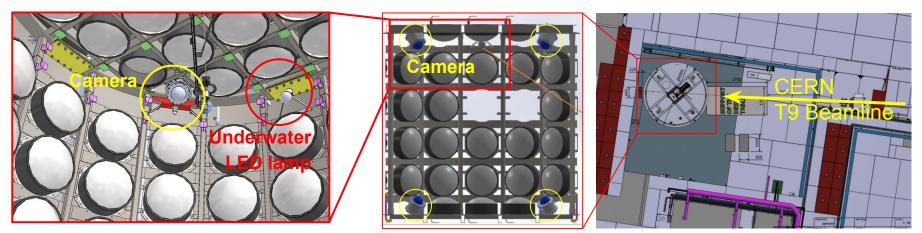
*Corriad aver

2) Water System Funding Details

- 2022 Goods: Lab materials and infrastructure:
 - Cleaning supplies, computer accessories, networking, chemistry supplies, plumbing, cuvettes for spectrophotometer, network camera
- 2022 Travel: Helped support PG pressure tests, consultation with SK Water Team, obtaining resin and Gd samples
- 2023 Goods: More lab materials to support PMT temperature dependence measurements and materials soak testing:
 - Tank insulation, dehumidifier, power supplies, depth sensors, plumbing and valves, fuses
- 2023 Goods: All-in-one conductivity, depth, temperature sensor
- 2024 Goods: Ultrasonic level sensor, cables, weight scale, (toilet) plunger

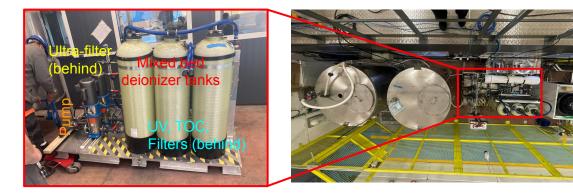

Year Goods Travel Total Remainder 2022 ~333,785 ~112,319 ~446,104 306,152* 2023 516.048 0 516.048 40,104 2024 173,512 0 173,512 6.488

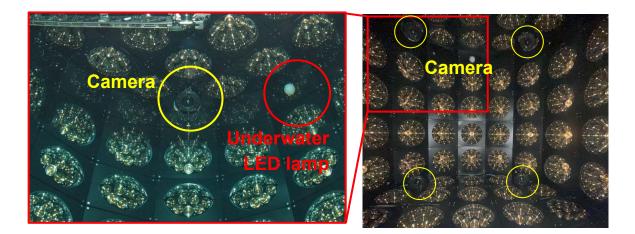

Actual spending (¥):

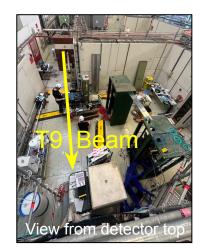

^{*}Carried over

Contributions to WCTE (and IWCD)

- R&D and components for:
 - 2) Water purification and gadolinium system
 - Especially experience from SK/EGADS & ICRR/IPMU system
 - 1) Photogrammetry fixed camera and lighting system
- Both systems will be (partially) re-used in HK's IWCD

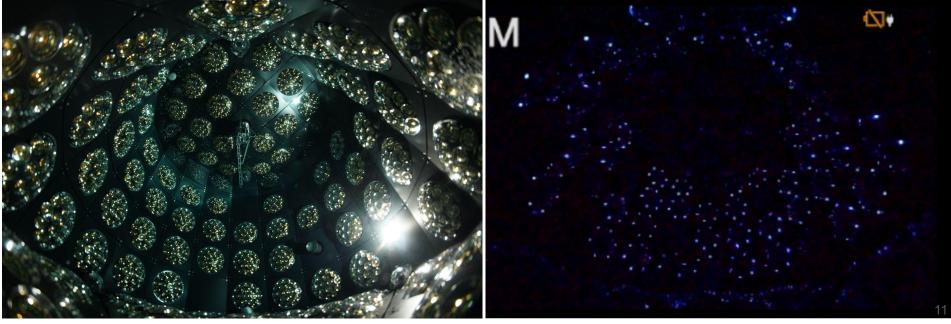




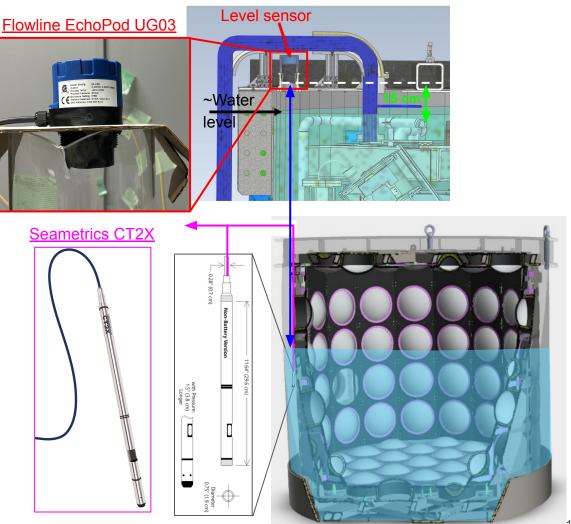


Realizing WCTE

- ICRR IURP helped make WCTE a reality!
- Photogrammetry and water systems delivered, commissioned, and operational by Oct. 2024



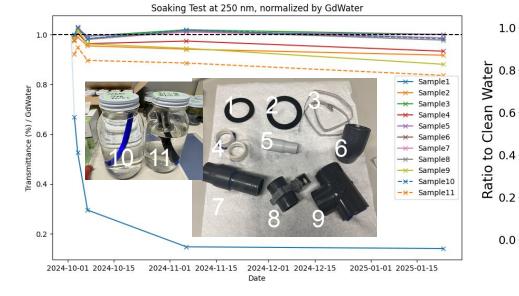
Photogrammetry Data

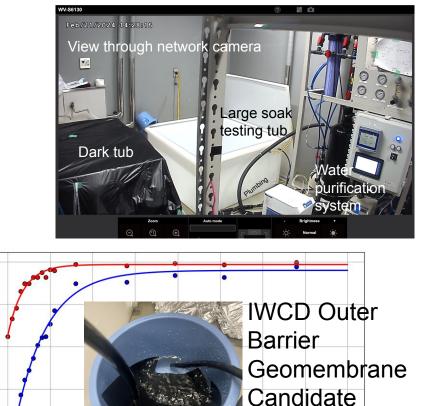

- Took photos from 7 cameras with ambient lighting and mPMT continuous LEDs
- Analysis ongoing to measure geometry
 - Based on software framework developed for SK
- Demonstration and design experience for HK's IWCD


Water Sensors

- Purchased level sensor and all-in-one sensor
- Both monitor detector water level for filling and to detect any leaks
- All-in-one also measures conductivity and temperature for water quality
- Both sensors may be re-used in IWCD

Water Sensor Measurements


Both sensors demonstrated mm resolution



All-in-one monitoring working well:

ICRR/IPMU Water System

- Continuing soak tests of WCTE and IWCD materials (also some cable-feedthrough mastic sealing used in FD)
- Also measured purification timescales
- No significant problems found

1.0

0.4

0.2

0.0

0.0

2.5

5.0

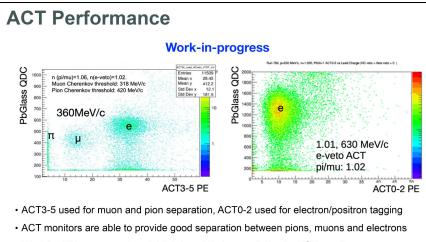
7.5

10.0

Timer (minutes)

12.5

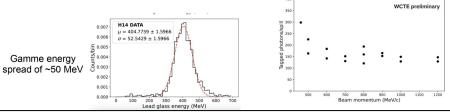
15.0


200 nm 265 nm

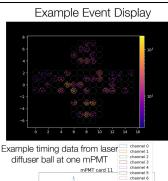
20.0

17.5

WCTE Highlights


- WCTE analysis started
 - More details featured at last week's <u>Neutrinos@CERN workshop</u>
 - Already many lessons learned towards HK-IWCD
- Final run starting this March

Work is still in progress to establish target timing resolution for TOF monitors


Tagged Gamma Performance

- Tagged gamma data from 2024 is still being analyzed, 2023 test data shown here
- Gamma energy inference confirmed with lead glass calorimeter (right)
- · We are able to collect 100-300 tagged gammas per spill
- Tagged gamma configuration is ready for collection of gamma data in WCTE in 2025

2024 WCTE Data

- Some challenges were met to collect quality WCTE data in 2024
- First instance of operating ~100 multi-PMTs together \rightarrow issues in firmware, readout and DAQ
 - Firmware and readout work is ongoing to ensure good operation in 2025
- We were able to collect data with about 1/2 of the multi-PMTs operating (see event display to right) and data processing is ongoing
- · Major ongoing effort for the calibration of the detector

Beam momentum

E 0 6

005

\$ 0.2

D 0.1

0.0

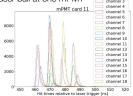
p = 460 MeV/c

p = 500 MeV//

p = 600 MeV/c

p = 700 MeV/c

p = 800 MeV/c p = 900 MeV/c p = 1000 MeV/c


p = 1200 MeV/c

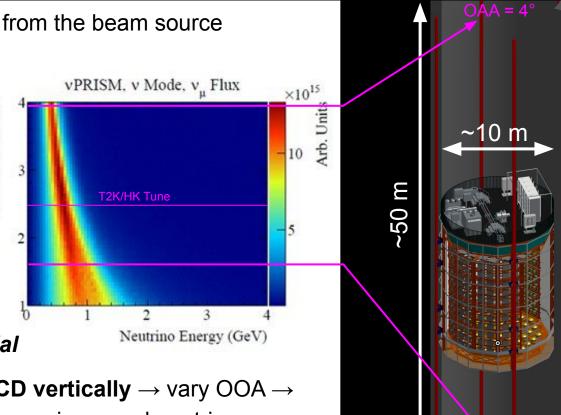
200 400 600 800 1000

WCTE preliminary

---- $C = (6.15 \pm 0.01) \times 10^{-4} \cdot E + (-0.017 \pm 0.0004)$

Photon expected energy (MeV)

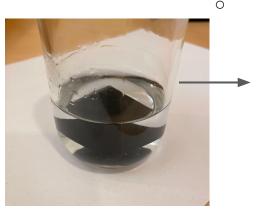
Summary

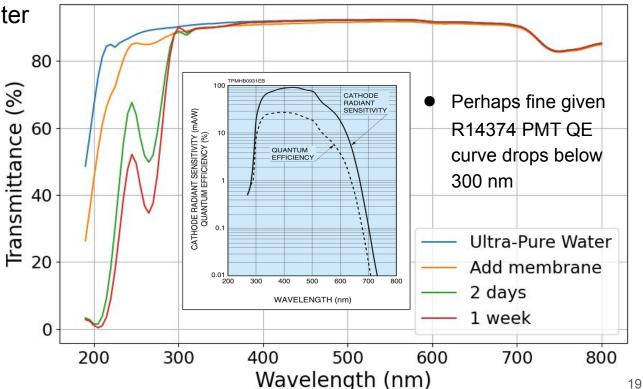

- WCTE photogrammetry and water purification systems successfully operational
 - Informed by R&D and experience from ICRR/Kamioka
- New WCTE experience and components will be transferred to HK (IWCD)
- Final WCTE beam run starting soon, to provide physics control samples for SK/HK
 - Analysis development is ongoing
- Thanks to ICRR-IURP for supporting this work!

Appendix

The Intermediate Water Cherenkov Detector (IWCD)

- New detector at ~830 m away from the beam source
- Measure $\frac{\sigma(v_e)}{\sigma(v_\mu)} / \frac{\sigma(\overline{v_e})}{\sigma(\overline{v_\mu})}$ a significant systematic for the CPV measurement
- Oscillated energy spectrum very different from unoscillated spectrum
 - Measure neutrino
 beam at different energies
 with same detector material
- nuPRISM concept: Move IWCD vertically → vary OOA → different neutrino energy spectra → improved neutrino interaction measurements

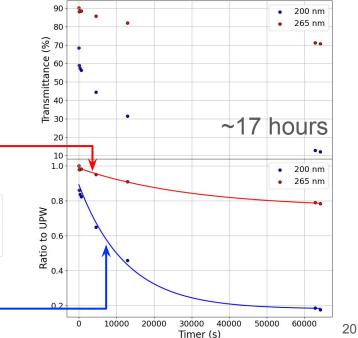

Off-axis Angle

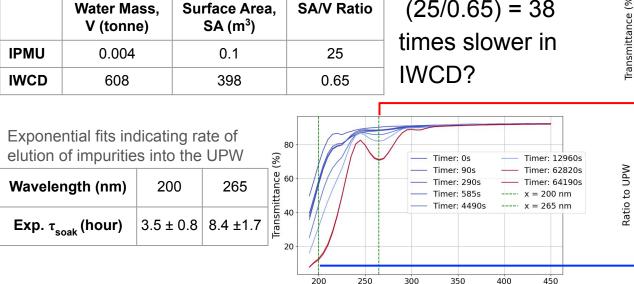


 $OAA = ~1.6^{\circ}$

IWCD Outer Barrier Candidate

- Geomembrane sample
- Soak test of 16 cm² (SA = 32 cm²) sample in 100 mL of ultra-pure water
- Immediately showed degradation of water quality (transmittance) in the UV region

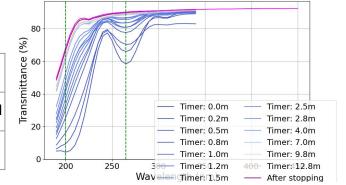




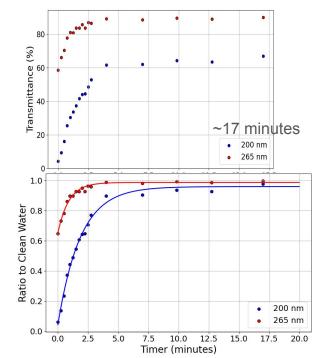
Larger Sample Soak

- Bucket of water circulated to purify
- Larger membrane sample immersed and covered
 - But not air tight seal
- <u>Table</u> of quantities to get an idea of scaling factors to IWCD, e.g. elution time scale should be

Wavelength (nm)

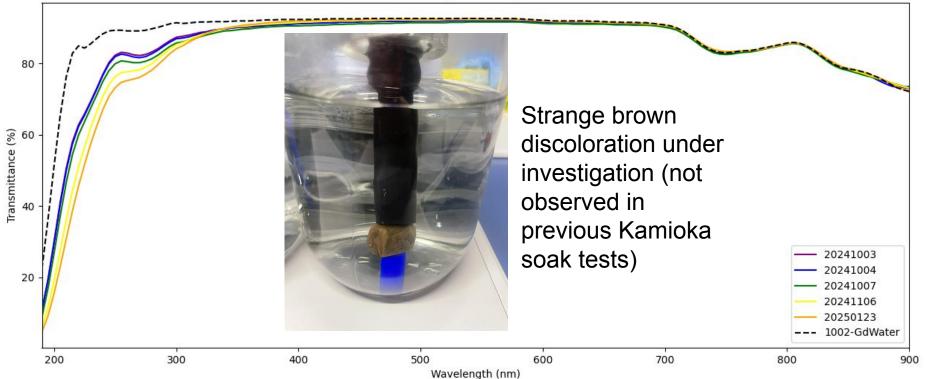

Cleaning / Circulation

- Bucket circulated with membrane
- Impurities can be removed by purification system


	Water Mass, V (tonne)	Surface Area, SA (m³)	SA/V Ratio	Flow (t/hr)	Turnover Time
IPMU	0.004	0.1	25	0.3	49 sec
IWCD	608	398	0.65	4.0	6.3 days

Exponential fits indicating rate of removal of impurities from water

Wavelength (nm)	200	265
Exp. τ _{clean} (min)	1.9 ± 0.1	0.9 ± 0.1
Exp. scale (-ve)	0.9	0.3



Soak Test of Cable Feedthrough Mastic Seal

Degradation very slow (~4 months) and mostly outside PMT QE sensitivity

Soaking Test Sample11

1) Photogrammetry Funding Overview

Approved amounts (¥):

Year	Goods	Travel	Total (inc. topup)
2019	700,000	300,000	1,500,000
2020	200,000	300,000	500,000
2021	300,000	200,000	500,000
2022	150,000	300,000	450,000
2023	50,000	300,000	350,000
2024	50,000	300,000	350,000

Reported this time

Actual spending (¥):

*Carried over

Year	Goods	Travel	Total	Remainder
2019	832,236	653,170	1,485,406	14,594
2020	0	127,739	127,339	372,261*
2021	872,234	0	872,234	0
2022	124,309	156,940	281,249	168,751*
2023	518,751	0	518,751	0
2024	310,860	0	310,860	39,140

2) Water System Funding Overview

Approved amounts:

Year	Goods	Travel	Total
2022	760,000	0	760,000
2023	200,000	50,000	250,000
2024	180,000	0	180,000

Reported this time

Actual spending:

*Carried over

Year	Goods	Travel	Total	Remainder
2022	~333,785	~112,319	~446,104	306,152*
2023	516,048	0	516,048	40,104
2024	173,512	0	173,512	6,488