

Jan 29th, 2025 令和6年度東京大学宇宙線研究所 共同利用発表会

(神戸

ガス飛跡検出器による暗黒物質探索実験

身内賢太朗

一理

竹内康雄 東野聡 鈴木 啓司 谷口 紘大(神戸大) 寄田浩平 田中雅士(早稲田大) Neil Spooner Alasdair G McLean (University of Sheffield) 南野 彰宏 芝山 凌 佐々木優斗(横国大) 小貫良行(東大) 藤井俊博(大阪公立大) 鶴剛(京大)

2.2024年度報告

- 研究費
 ・35万円配分(物品費5万円 旅費30万円) ほぼ執行済
- 研究内容
 - 地下測定
 - 低BG µ-PICを用いたDM run (NIMA 1072(2025)170145)
 - ガス中の不純物除去 (2024 J. Inst. 19 P02004)
 - 中性子測定(早稲田・横国グループ) 関連:南野氏発表
 - R&D
 - ・ 陰イオンガス
 - 大型TPC(C/N-1.0)
 - その他
 - 国際情勢のレビュー (JAIS-473, 2024)

2025年1月29日

ICRR共同利用成果発表会

- 検出器: NEWAGE-0.3b"
 - Detection Volume: 31×31×41cm³
 - ~1500ch readout system
 - Gas: CF₄ at 0.1 atm (50keVee threshold)
 - 3D nuclear tracks
 - gamma-ray BG rejection

NEWAGE-0.3b outside

 μ -PIC(Micro-pixel chamber)

- 31 × 31cm²
- pitch : 400µm
- gain : ~1000
- made by DNP, Japan

Field cage Drift length: 41cm PEEK + copper wires

- GEM
- 31 × 32 cm²
- 8-segmented
- hole pitch : 140 μ m
- hole diameter: 70 μ m
- insulator : LCP 100µm
 gain : ~5
- made by Scienergy, Japan

PTEP2023結果 方向感度解析として世界最高感度 ×2 improvement from NEWAGE 2021 ×10 improvement from NEWAGE2020 3D-vector analysis

2025年1月29日

PTEP(2023)ptad120

• 探索感度向上

・低BG化:現行機で1桁は落とせる (右図参照)
・大型化:その先の探索に向けて

BG源 チェンバー内ラドン 外部 γ 線 その他

2025年1月29日

ICRR共同利用成果発表会

低BG化 (ラドン低減)

- ・ 低BG μ-PIC製作
 - 2020年 1枚
 - 2023年 2枚
 - 2025年(3月完成予定)

µ-PICの構造と材料

2025年

NIMA 1072(2025)170145

低BG µ-PIC製作 2020年、2023年版共に低BG製作OK

NIMA 1072(2025)170145

Table 3

Radon emanation measurement results. All upper limits are 90% C.L.

	Sample	²¹⁴ Po rate [count/day]	Radon emanation rate [mBq/m ³]	Radon emanation rate [mBq/µ-PIC]
PTEP		34.1 ± 4.9	85.2 ± 17.4	2.3 ± 0.5
	LBGµ-PIC2020	<2.0	<5.1	< 0.14
	$LBG\mu$ -PIC2023-1	<0.6	<1.5	< 0.04
	$LBG\mu$ -PIC2023-2	<0.7	<1.8	< 0.05

ICRR共同利用成果発表会

• 低BG μ-PIC製作

検出器として

2020年版:ピクセル形状が不均一(下図で全体的に暗い&ムラあり)
2023年版:ピクセル形状は改善2枚中1枚はショート多数

低BG µ - PICによるDM run インストール:2023年12月

µ-PIC (左側)と GEM (右側)

2023年度共同利用成果発表会 (東野)

インストールの様子 2023年12月15日完了

2025年1月29日

低BG µ-PICによるDM run ラドンBG: 有意な削減は見られず

μ-PIC以外のラドン源を調査 ラドンBGの低エネルギーへの寄与を 調査

2025年1月29日

ICRR共同利用成果発表会

10

・低BG化(ラドン以外) ・外部ガンマ線 ・外部中性子

JPS 2024年秋(東野) 銅シールド (環境ガンマ対策)

9

2025年1月29日

・低BG化(ラドン以外) ・外部ガンマ線 ・外部中性子

JPS 2024年秋(東野)

● 252Cf 中性子線源とNEWAGE検出器からの距離によるレート遷移を調査

➡NEWAGEのevent selectionをかけた後のイベント数で比較

•100 m先の中性子線源にも感度があることがわかった

252Cf線源を坑外に移動してBG run
 計数率 (100-400keV)

 線源@坑内 0.40 ± 0.12 events / day
 線源@坑外 0.20 ± 0.09 events / day

 線源周り遮蔽を追加して以降の測定を行う

・大型化: CYGNUS-KM/NEWAGE-1.0(C/N-1.0) ・地下でのBG低減の経験を反映しながら コミッショニング/移設準備

地下測定:低BG µ-PIC runデータ取得中

大型ガスTPC:コミッショニング中

