B11:⁴⁸Caの二重ベータ崩壊の研究

大阪大学核物理研究センター 梅原さおり umehara@rcnp.osaka-u.ac.jp CANDLES Collaboration LIS Collaboration

□ 二重ベータ崩壊測定装置:CANDLES III
□ 次世代二重ベータ崩壊測定装置CANDLES開発

CANDLES

Camioka Observatory
⁴⁸Ca二重ベータ崩壊測定用複合型検出器
CaF₂シンチレータ: 305 kg (96個 × 3.2kg)
液体シンチレータ (LS): 全方向ベトー検出器
大型光電子増倍管

NIM A1069, 169982(2024), CANDLES Collaboration, CANDLES-III detector: Low-background spectrometer for studying neutrino-less double decay of 48Ca

□130日の測定結果

高純度21結晶の結果

	結果
0vββ検出効率	0.36(21CaF ₂)
事象数(exp)	0
予想されるBG量	1.02
0νββ半減期	>5.6 × 10 ²² year
測定感度	2.8 × 10 ²² year
Phys Rev D, 103, 092008 (2021)	
* 先行検出器ELEGANT VI 測字時間: 4047 kg; dox(2年登)	

測定時间:4947 kg•day(2年强) 半減期 :>5.8×10²² 年

新規解析導入を目指す CaF₂結晶内部の放射性不純物がBG源 ²⁰⁸TI、²¹²BiPo除去の新しい解析

解析手法の改善

- □ バックグラウンドフリー測定を目指して
 - 測定時間が約6倍、結晶数が約4倍
 - バックグラウンド除去解析の改善
 - ²¹²Bi²¹²Po(連続信号) 除去: 終了
 - ■新たに機械学習を導入+粒子識別手法
 - ²⁰⁸TI 除去: シミュレーションによる波形情報の再現
 - 上行²¹²Biα崩壊事象を最尤法により識別(位置情報+波形情報 (粒子識別)+時間情報) 212D:212D:

梅原さおり、2025年01月29日、宇宙線研究所成果発表会

検出器開発:濃縮

□ カルシウム48

■ 天然同位体比が低い:0.19 %

■ 濃縮によって感度向上が可能

□ レーザー濃縮手法を開発

装置概略

梅原さおり、2025年01月29日、宇宙線研究所成果発表会

梅原さおり、2025年01月29日、宇宙線研究所成果発表会

まとめ

□ B11:⁴⁸Caの二重ベータ崩壊の測定

- Ονββ+2νββに適用する新解析手法開発
- 並行して次期検出器開発

■レーザー濃縮装置開発

■高純度結晶:B3とも連携

■ Ge検出器を用いた低放射能分析

□予算: 査定額

■ 共同研究費22万円

■神岡への旅費として使用。

■ サポートありがとうございました。

*来年度もよろしくお願いします。