ボリビア・チャカルタヤ山宇宙線観測所における 高エネルギーγ線・宇宙線観測のための 空気シャワー実験

- ・ボリビア・チャカルタヤ山宇宙線観測所における高エネルギーγ線・宇宙線観測のための空気シャワー実験(継続)
- (常定芳基 大阪公立大学)
- アンデス高原における雷雲からの高エネルギー放射線の研究(継続)
 - (日比野欣也 神奈川大学)
- ・ **南半球で観測する宇宙線中の太陽の影を用いた太陽磁場の研究** (継続) (川田和正 東京大学)
- ・ボリビア・チャカルタヤ山宇宙線観測所における高エネルギー宇宙線異方性の研究(継続)
- (佐古崇志 東京大学 => 長野県工科短期大学)
- ALPACA実験・ALPAQUITA実験で探る星質量ブラックホール連星におけるPeV宇宙線加速の可 能性(新規)
 - (加藤勢 東京大学 => パリ天体物理学研究所 IAP、ソルボンヌ大学)

ボリビア実験関係共同利用研究 経費執行状況

・研究費:配分額 250万円 チャカルタヤ観測所運営分担金や ALPAQUITA実験装置に使用

・旅費:配分額 173万円 ボリビア出張・宇宙線研での国内研究打ち合わせに使用

ご支援、ありがとうございます!

活動状況

・ボリビア渡航:延べ7人(インフラ整備、装置調整、打ち合わせ)

2024/6/12-7/1 宇宙線研: さこ 2024/11/23-11/30 宇宙線研: さこ・藤田 2024/11/25-12/10 宇宙線研: Anzorena·杉本 2024/11/25-12/18 宇宙線研:大西 2025/1/27-2/14 宇宙線研:大西

国際会議発表

22nd International Symposium on Very High Energy Cosmic Ray Interactions (ISVHECRI 2024), 8-12 July (Mexico) TeV Particle Asrtrophyics (TeVPA) 2024, 26-30 August (Chicago)

International Conference on High Energy Physics 2024 (ICHEP2024), 17-24 July (Prague)

Space Climate9, ISEE Symposium, 1-4 October (Nagoya)

7th International Symposium on Ultra High Energy Cosmic Rays 2024 (UHECR2024), 17-21 November (Malargue, Argentina)

4

• 国内学会発表

9月16日-19日	日本物理学会第79回年次大会	(北海道大学)	6講演
9月11日-13日	日本天文学会2024年秋季大会	(関西学院大学)	2講演
3月18日-21日	日本物理学会2025年春季大会	(オンライン)	5講演(予定)
3月17日-20日	日本天文学会2025年春季年会	(水戸市民会館)	2講演(予定)

Gamma-ray sky

ALPACA

(Andes Large area <u>PA</u>rticle detector for <u>Cosmic</u> ray physics and <u>A</u>stronomy) Mt. Chacaltaya, Bolivia

UMSA CR Observatory 5200 m a.s.l.

La Paz

ALPACA site 4740 m a.s.l.

4,740 m above sea level (16°23´S, 68°08´W)

The ALPACA Collaboration

M. Anzorena^A, E. de la Fuente^C, K. Fujita^A, R. Garcia^A, K. Goto^D, Y. Hayashi^E, K. Hibino^F, N. Hotta^G,
G. Imaizumi^A, A. Jimenez-Meza^C, Y. Katayose^H, C. Kato^I, S. Kato^A, T. Kawashima^A, K. Kawata^A, T. Koi^J,
H. Kojima^K, T. Makishima^H, Y. Masuda^I, S. Matsuhashi^H, M. Matsumoto^I, R. Mayta^B, P. Miranda^B,
A. Mizuno^A, K. Munakata^I, Y. Nakamura^A, M. Nishizawa^L, Y. Noguchi^H, S. Ogio^A, M. Ohnishi^A,
S. Okukawa^H, A. Oshima^{D,J}, M. Raljevic^B, H. Rivera^B, T. Saito^M, T. Sako^A, T. K. Sako^N, T. Shibasaki^O,
S. Shibata^K, A. Shiomi^O, M. Subieta^B, F. Sugimoto^A, N. Tajima^P, W. Takano^F, M. Takita^A, Y. Tameda^Q,
K. Tanaka^R, R. Ticona^B, I. Toledano-Juarez^C, H. Tsuchiya^S, Y. Tsunesada^{T,U}, S. Udo^F, R. Usui^H,
G. Yamagishi^H, K. Yamazaki^J, Y. Yokoe^A (The ALPACA Collaboration)

ICRR, Univ. of Tokyo^A, IIF, UMSA^B, Univ. de Guadalajara^C, Coll. of Engn., Chubu Univ.^D, Dept. of Sci. and Tech., Shinshu Univ.^E, Fac. of Engn., Kanagawa Univ.^F, Utsunomiya Univ.^G, Fac. of Engn., Yokohama Natl. Univ.^H, Dept. of Phys., Shinshu Univ.^I, Coll. of Sci. Engn., Chubu Univ.^J, Astro. Obs., Chubu Univ.^K, NII^L, Tokyo Metro. Coll. of Ind. Tech.^M, Dept. of Info. and Elec., Nagano Pref. Inst. of Tech.^N, Coll. of Ind. Tech., Nihon Univ.^O, RIKEN^P, Fac. of Engn., Osaka Electro-Comm. Univ.^Q, Fac. of Info. Sci., Hiroshima City Univ.^R, JAEA^S, Grad. Sch. of Sci., Osaka Metro. Univ.^T, NITEP, Osaka Metro. Univ.^U

ALPACA Air Shower Array

- ✓ Cosmic-ray BG rejection power >99.9% @100TeV.
- ✓ Angular resolution ~0.2° @100TeV, Energy resolution ~20%@100TeV
- ✓ 100% duty cycle, FOV θ_{zen} <40° (well studied), θ_{zen} <60° (in study)

58 m² Muon Detector x (16+48) (3 700 m²)

ALPAOUITA

ALPACA Construction Plan

Heart of the experiment ~Underground muon detector~

PROYECTO "ALPACA" FACULTAD DE CIENCIAS PURAS Y NATURALES UNIVERSIDAD MAYOR DE SAN ANDRES

OCTUBRE 2023

- Long discussions with Bolivian design companies => fixed
- Public call for construction company soon
- Construction of the 1st MD will start in 2025
- First gamma-ray sensitive observation starts in 2025

ALPAQUITA Air Shower Array

¹/₄ALPACA-scale air shower array 1m² scintillation detector x 97 with 15m spacing Effective area ~18,000m²

Air Shower Trigger Condition :

Any 4 (Any3 since Jun 2024) detectors with >0.6 particles within 600ns

→ Rate ~280Hz @ CR mode energy ~7 TeV Counting Mode Condition :

Any1, Any2, Any3, Any4 rates every 0.1 sec

1m² 5mm lead plate 1m² Scintillator (50cm x 50cm x 5cm x4)

Inverse pyramid shape Stainless steel box (White painted inside)

2-inch PMT x1

Construction status: 2022 Jun. Deploy detectors 2022 Sep. Partial operation 2023 Apr. Full operation

ALPAQUITA monitoring

Back to photo index		Deily monitoring
fcerial_of_detector #number_of_count		Evelscan
Light Leakage 4050 5464 Light Leakage	Nax class N1.5 flare occured at 2024-10-16713:12:005 and ended at 2024-10-16713:38:005	Automatic failure detection
4052 5587 Light Leakage 4246 5015	Max class M1.3 flare occured at 2024-10-16714:29:002 and ended at 2024-10-16714:51:002	- Automatic failure detection
Too law count 4252 4 Light Leakage	Max class M1.3 flare occured at 2024-10-16714:51:00E and ended at 2024-10-16715:04:00E	

Previous day page

ALPAOUITA count rate 241016

Environment Monitor at 04:45:11_2024/12/18

expand / close any i average							
						Annotation to State of a	
dif_day	min_max_scatter	2d_hist	air pressure	temperature	humidity	electric field	
any 1	any2	any3	any4				
Enlarge	Enlarge	Enlarge	Enlarge	Enlarge			
#4046-4250	#4252-4452	#4454-4650	#4652-4846	#4848-5044			
-	-	-	-	-			

Next day name

Electric field correlation?

Performance of ALPAQUITA Even-Odd Method

Event selection criteria:

- Zenith angle < 40deg
- In Array flag = on
- 1.25 Any 4 flag = on
- Residual error < 1.0

Even-Odd opening angle : Opening angle between directions determined by two independent arrays (even and odd arrays)

Angular resolution $\sigma_{50} = \Delta \theta_{OP} \; / \; 2 \; = \; {\sim} 1^{\circ}$

Data-MC comparison

- · Detector calibration data are taken into account
- Good agreement between experimental data and MC
- Air shower array shows expected performance

Moon Shadow

NORTH

SOUTH

- Shadow of the moon is clearly detected at $>8\sigma$
- Evolution of the deficit depth suggests the angular resolution of 1.1 degree (mode energy = a few TeV)

Forbush decrease in May 2024

14/05

14/05

Median rigidity and amplitude

- ALPAQUITA response function in CR rigidity
- MC simulation with a model CR spectrum and composition
- Median rigidity above 12GV geomagnetic cutoff Any1:76GV, Any2:960GV
- Median rigidity and FD amplitude
 - ALPAQUITA Any1 aligns with the traditional experiments
- ALPAQUITA Any2 will give a strong constraints at highest rigidity (UL determination in progress) 20

k=0: nominal

ateral (MC study)

Experimental Astronomy, accepted (2025)

sensitivity improvement w.r.t. k=0 (nominal)

Summary

- ・南半球でsub-PeVガンマ線を観測するALPACA実験を進行中
- ・¼サイズのALPAQUITA地上アレイが稼働中
 - 雷同期事象を観測か
 - ・基本特性(天頂角、 $\Sigma
 ho$ 、even-odd開き角)をMCで再現
 - ・月の影を10シグマで確認
 - Counting modeで Forbush decreaseを検出。~1TVで制限。
 - Muon lateral分布を利用したガンマ線検出感度向上
- •2025年に地下ミューオン検出器1号機を建設し、ガンマ線天文 学を開始
- 2026年に Full ALPACA (w/4 MDs)を完成し、本格的な観測を 開始

ALPAC Environment Monitor at 04:45:11_2024/12/18

The ALPACA Experiment at Cerro Estuqueria, Bolivia (updated 04:45:11_2024/12/18)

Outside	e Air	Control Roon	n (Inside)	Wind	d Speed	Wind	Direction	Precipitation	mm
Ambient Temp.	1.8 °C	Room Temp.	23.90 °C	Ave.	m/s	Ave.	deg.	Duration	sec
Humidity	80.6 %	Humidity	20.77 %	Max	m/s	Max	deg.	Intensity	mm/h
Station Pressure	579.7 hPa	Dew-point Temp.	0.12 °C	Min.	m/s	Min.	deg.	Peak Intensity	mm/h
Ambient Tempurature [°C]		Ambient Humidity [%]		Station Pressure [hPa]]		
PTU300		PTU300		PTU300					

ALPAQUITA Air Shower Analysis

