神岡坑内における精密地球物理観測と地殻活動のモデリング

高森 昭光 (東大地震研)

概要

- □神岡坑内での観測
 - ■地下観測の目的
 - ■これまでの共同利用研究課題
 - ■神岡地下観測装置
 - ■レーザーひずみ計

□研究報告

- ■能登半島付近の地震活動、イベントに関連するひずみ変動の解析
- ■スペクトログラムを用いた解析(2022年6月19日のイベント)
- ■地震断層モデルの評価(2023年5月5日のイベント)
- ■2024年1月1日のイベント後の余効変動とひずみ計光軸の長期変動の解析

□今後の計画

神岡坑内での観測

- □目的:地殻活動・地球内部構造の研究
 - ■現象:地震・地殻変動・自由振動・潮汐・火山活動など
 - ■観測手法:地震波・地殻ひずみ・重力など
- □神岡坑内観測のメリット
 - ■安定、擾乱の少ない環境 ⇒ 高精度観測が可能(より微細な現象、遠方の現象を観測)
- ■KAGRAの安定稼働に寄与
 - ■基線長変動の補償データ提供

これまでの採択課題

□2003~2005年度

■神岡地下施設におけるレーザー伸縮計を用いた地球ダイナミクスの研究(竹本修三 他)

□2007~2012年度

■レーザー伸縮計と超伝導重力計の同時観測による地球の固有振動の研究(森井亙、田村良明 他)

□2013~2016年度

■坑内地球物理観測でとらえる水と雪のダイナミクス (今西祐一、新谷昌人 他)

□2017年度~継続中(本課題)

■神岡坑内における精密地球物理観測と地殻活動のモデリング(新谷昌人 他)

2024年度査定額:20万円(旅費として使用)

神岡地下観測装置

レーザーひずみ計

■マイケルソン干渉計

■ヨウ素安定化レーザー

- レーザー波長 = 長さ基準:ひずみ分解能を決定
 - ▶ヨウ素ガスの吸収線にレーザー波長を安定化
 - ▶ 10⁻¹³台の安定度 = ひずみ分解能

レーザー光学系

ビームスプリッタとリフレクタ

■ Quadrature phase detection

- 90°の位相差を持った2偏光を使用
 - ▶ リサージュ図形からレーザー光の位相変化を検出 cf. 無偏光型の干渉計では伸縮の方向は決定できない

干渉縞

- ■2007年3月25日に西部でM6.9の地震
- ■2020年12月頃から能登地方での地震活動が活 発化
- ■2022年6月19日にはM5.4の地震
- ■2023年5月5日にはM6.5の地震
- ■2024年1月1日にはM7.6の地震
- ■2022年~の地震活動に流体が関与していることが示唆されている

2007年能登半島沖地震M6.9

合成開ロレーダー(InSAR)で観測された地震にともなう地殻変動

・・・衛星「だいち」によるInSAR解析結果 (古屋正人氏による)

■2007年3月25日M6.9の際に100m ひずみ計で観測された基線長変動

CLIO絶対長干渉計により距離変化を観測(NS:3.5×10⁻⁸)

•••100mの距離の3.5 µ mの伸び (Araya et al., 2010)

GPSによる観測結果(国土地理院HP)

•・・震源より遠方は変化が小さく検出困難

平成19年 (2007年) 能登半島地震に伴う地殻変動ベクトル図

資料-1

- ■2007年3月25日に西部でM6.9の地震
- ■2020年12月頃から能登地方での地震活動が活 発化
- ■2022年6月19日にはM5.4の地震
- ■2023年5月5日にはM6.5の地震
- ■2024年1月1日にはM7.6の地震
- ■2022年~の地震活動に流体が関与していることが示唆されている

能登半島付近の地震活動

●能登半島の群発地震のメカニズムの模式図。GNSS データの解析から、地殻深部の流体が断層帯内を拡 散することにより断層帯の膨張とスロースリップを引き起こし、さらにその浅部で活発な地震活動を長期 にわたって引き起こしていることが示唆されます。

西村、平松、太田(2023)

2020.11~2021.3 2021.3~2021.6 2021.6~2022.6

or shear-tensile fault

Earthquake Fluid migration

GNSS観測結果は地下流体の関与を示唆

Nishimura et al. (2023)

レーザーひずみ計のメリット

- □地震計に比べて、低周波の現象を捉えやすい
 - ■地震計 速度や加速度
 - ■ひずみ計 距離変化
- □高いひずみ分解能
 - ■ボアホールひずみ計 10⁻⁹程度の相対変化
 - ■レーザーひずみ計 10⁻¹³ 程度の相対変化 (Araya et al. 2002)

流体が関与した長周期変動などを捉えられる可能性がある

ひずみデータの解析・・・複数の手法を適用

ひずみスペクトルの時間変化(スペトログラム)を用いた解析

- ■地震イベント前後のひずみスペクトルの時間変動
- ■同様の気圧スペクトルとの比較
- ■地震発生メカニズム(流体の寄与等)の評価

地震断層モデルを用いた神岡での地殻変動量の評価

■地震イベント前後のひずみ変化量を算出し、モデルの妥当性を評価

長期的な坑内変形と地殻変動の関連性の解析

- ■1500mひずみ計の光軸の長期的時間変動の抽出
- ■2024年1月1日のイベント後の余効変動との関連性の評価

スペトログラムを用いた解析

- ■2022年6月19日の地震イベント前後のひずみスペクトルの時間変動
- ■同様の気圧スペクトルとの比較

- □15:08 能登M5.4
- □地震時のひずみ変化 が大きい
 - →地震前後で分割

地震前後 2022/6/19 15時ごろ

- □地震後に10~20分程度の比較的周期が長い変動
- □地震波動により励起された媒体(流体等)の振動の可能性を調査中

地震断層モデルを用いた神岡での地殻変動量の評価

■能登群発地震の観測(2023)

■ 2023年5月5日 14:42, Mw6.2

■震源:能登半島沖、神岡の北134 km、神岡で震度2

□神岡レーザーひずみ計による観測

■GIF: 干渉状態を維持。連続観測成功

■CLIO:観測中断中(レーザー制御off)にイベント発生

周辺のCMT解

セントロイド時刻とセントロイド位置およびモーメントマグニチュード

セントロイド時刻	緯度	経度	深さ	Mw
2023-05-05 14:42:10.1	北緯37度37.2分	東経137度17.6分	10km	6.2

発震機構解

	走向	傾斜	すべり角		P軸	T軸	N軸
断層面解1	49	34	97	方位	313	113	223
断層面解2	220	56	85	傾斜	11	78	4

気象庁CMT解

地震断層モデルを用いた地殻変動量の評価

- ■GIFによる観測(暫定値)
 - ■改良位相変換プログラムによる再解析
 - 自動化を目標に改良作業継続中
 - ■大振幅のひずみ波形を観測
 - 7.4×10⁻⁷ pp (飽和や不連続点なく観測)
 - ■ひずみステップ
 - 観測値:~3.8×10⁻¹⁰ (伸び)
 - 理論値:~7.6×10⁻¹⁰ (伸び)
 - ➤ 気象庁CMT解とMICAP-G(弾性体モデル)
 - ▶ 断層長さ5 km, 幅 10 kmを仮定した推定値
 - ⇒ 整合的な方向、オーダー

長期的な坑内変形と地殻変動の関連性の解析

- □2024年能登半島地震
 - ■2024年1月1日 16時すぎ (最大Mw 7.5@16:10)
 - ■神岡で震度4:安全のため入坑制限
- □レーザーひずみ計
 - ■GIF:振動により光軸がずれ、干渉が途切れた
 - 翌日にリモート復旧して、余震などの観測を継続
 - ■CLIO:観測中断中にイベント発生
 - 約1ヶ月後に現地で復旧作業、観測を継続
 - リモートでの復旧(調整)機能を強化した
 - ➤ モーター付きミラーマウントへの交換 レーザー周波数制御の稼働率向上
 - ▶ 干渉計入射光軸モニター用カメラ追加

セントロイド時刻とセントロイド位置およびモーメントマグニチュード

セントロイド時刻	緯度	経度	深さ	Mw
2024-01-01 16:10:42.3	北緯37度29.2分	東経137度15.6分	15km	7.5

発震機構解

	走向	傾斜	すべり角		P軸	T軸	N軸
断層面解1	47	37	100	方位	310	93	219
断層面解2	215	54	82	傾斜	8	80	6

長期的な坑内変形と地殻変動の関連性の解析

- □2024年能登半島地震
 - ■GNSSデータによるひずみ推定
 - 国土地理院GEONETのGPSデータ利用
 - ▶神岡周辺の電子基準点4カ所の変位から推定
 - ▶ 各点2-6 cm程度北西に変位
 - ▶ 一様な変形を仮定
 - KAGRAトンネルのひずみ推定値
 - ➤ Xアーム:~ 95 × 10⁻⁹ (約0.3 mm縮み) 2023.5.5の約240倍
 - ▶ Yアーム:~524 × 10⁻⁹ (約1.6 mm伸び)
 - 両アーム間の角度変化
 - ▶ ~4.9 × 10⁻⁷ rad(90° より閉じる方向)

GIF入射光軸の長期変動解析

□入射光学系

- ■平面・凹面鏡による反射望遠鏡
 - ビームウェスト位置をエンドリフレクタに合わせる
- ■光軸調整
 - 凹面鏡の角度をアクチュエータで調整
 - およそ月1回リモートで調整
 - 主に入射光を下げる方向 (pitch) の調整

入射光軸調整の履歴

□主なできごと

- a.実験室の小屋が完成 (2017/6/23) 簡易的なビニールカーテンのみだった 環境変化によるドリフト速度変化
- b.平面鏡のマウント補強 (2018/8/17) 平面鏡の荷重を受けるばねを補強 →ドリフト速度が半分近くに低下
- c. 誤操作による飛び(2023/12/26) KAGRAのアクチュエータと誤認して操作
- d. 能登半島地震(2024/1/1)

□pitchの長期変動

- 上記のb以降ほぼ一定のドリフト速度
- トレンドから外れる時期あり:原因調査中
 - 冬場に発生する傾向:季節変動?降雪量と関連?

umulative correction angle [rad]

• 地震、地殻変動と関連?

b. ミラーマウントの補強

2024能登半島地震

■GIF光軸への影響

- ■地震前から継続するドリフト成分を除去
- ■地震直後に約5 µradの飛び(coseismicな変動)
- ■地震前よりはやい過渡的変動が約半年継続
 - 地震直後に比べてトータルで約15 μ rad変動
 - 変動の時定数~67日

2024能登半島地震によるcoseismicな傾斜変動

- □理論モデル:傾斜変動
 - MICAP-G(気象研)を用いて計算
 - 弾性体モデル (Okada, 1992)
 - 国土地理院の断層モデルを適用

【推定された震源断層パラメータ】

	, _ ,			•						
	経度	緯度	上端深さ	長さ	懈	走向	傾斜	すべり角	すべり量	M_w
	۰	0	$_{ m km}$	$\rm km$	$_{ m km}$	0	0	0	\mathbf{m}	
断層 1	136.680	37.246	0.1	22.0	12.2	22.7	40.6	84.4	6.79	7.09
	(0.002)	(0.002)	(0.1)	(0.3)	(0.2)	(1.0)	(0.4)	(1.3)	(0.11)	(0.01)
断層 2	136.876	37.414	0.0	16.2	20.4	78.3	54.9	140.2	2.83	6.90
	(0.003)	(0.001)	(0.0)	(0.4)	(0.5)	(0.6)	(0.6)	(0.7)	(0.05)	(0.01)
断層 3	137.037	37.445	0.1	66.8	11.5	53.3	49.7	114.6	4.42	7.27
	(0.001)	(0.002)	(0.1)	(1.1)	(0.1)	(0.4)	(0.3)	(0.2)	(0.04)	(0.00)

- ・マルコフ連鎖モンテカルロ(MCMC)法を用いてモデルパラメータを推定。括弧内は誤差(1σ)を示す。
- $\cdot M_w$ と断層面積をスケーリング則 (Strasser et al., 2010) に近づくように拘束。
- $\cdot M_w$ の計算においては、剛性率を $30{
 m GPa}$ と仮定。3 枚の断層の合計の M_w は 7.44 。

https://www.gsi.go.jp/common/000264084.pdf

傾斜変動ベクトルの分布(モデル)

□結果

- 東西方向に約0.23 µ rad傾く(東が上昇)
- GIFの基線方向では、約0.21 *µ* rad傾く
- 入射光軸補正量より1桁小さい
 - 一様な傾きは入射光軸に影響しない

2024能登半島地震によるcoseismicな傾斜変動

- ■理論モデル:ひずみ
 - ■地下(KAGRA坑内)のせん断ひずみ
 - ・ 深さ依存性あり
 - 地下300-500 mで計算
 - ϵ_{zx} および ϵ_{yz} 成分から光軸のずれを見積もる
 - ■GIF光軸方向の変化
 - エンドリフレクタの方が高くなる方向に変動 ▶ 高低差: 2.7-4.5 µ m
 - 0.002-0.003 μ radの傾斜に対応
 - ▶ 入射光軸の補正量に比べて十分小さい

深さ	GIFミラーの高低差 Δz(μm)	傾斜換算(μ rad)
300 m	+2.7	0.0018
400 m	+3.6	0.0024
500 m	+4.5	0.0030

せん断ひずみ($arepsilon_{zx}$ 成分)の分布

2024能登半島地震後の地殻変動 (余効変動)

- ■GNSSデータ解析
 - ■国土地理院GEONET
 - 日毎のデータ解析
 - ■3地点のデータを使用
 - 震源域:輪島2
 - 神岡近傍:細入
 - 中間地点:氷見
 - ■震源域で顕著な上下変動
 - 2024年末までに~7 cm沈降
 - 変化の時定数>140日
 - ➤ GIF光軸変化の2倍以上

⇒近傍断層活動や強震動の影響も 考慮しつつ引き続き分析

2023(左)、2024年(右)の電子基準点(GEONET)変<u>体</u>

今後の計画

- ■CLIO, GIFのレーザーひずみ計同時長期観測
 - ■安定・長期的な地殻変動観測を継続
 - 能登半島地震の余震、ひずみ変化に注目
 - ■データ処理手法の改良(自動化)
 - ■DAQシステムの更新
- □地震イベント前後のひずみ変動解析を継続
 - ■解析ターゲットを拡充 (イベント選定)
 - ■地震発生メカニズム(流体の寄与等)との関係を定量的に評価
- ■気圧変化とひずみの関係調査
 - ■理論、観測両面からのアプローチ
- □近傍断層活動の影響評価手法の研究

地震時の干渉計信号

□2024年能登半島地震

■GIF:前震の観測と干渉の消失

• ~1.3 × 10⁻⁷ pp (連続的に観測)

①:地震前(10秒間)

②:揺れの最中(0.2秒間)

遠地地震と不規則なひずみ変動 2023/12/31 0~3時

- □遠地地震は2:16 Abepura西南西(インド ネシア)M6.3
- □固体地球潮汐とは異なる長周期ひずみ変動を 観測
 - ・・・気圧との関連性?