Hyper-Kamiokande

Yusuke Koshio (Okayama University)

CRC town meeting, 10th of March, 2025

Hyper-Kamiokande Next generation multi-purpose water Cherenkov detector

Hyper-Kamiokande Next generation multi-purpose

Physics targets

mination of CP phase 1.3MW x 6 months/y x 10 yrs x 190 kiloton

Precision of CP phase measurement Statistics only Improved syst. (v_e/\overline{v}_e xsec. error 2.7%) Improved syst. (v_e/\overline{v}_e xsec. error 4.9%) T2K 2020 syst. (v_e/\overline{v}_e xsec. error 4.9%) 25 ľ 1 σ error on δ_{CP} (degrees) 20 15 50 100 -150 -100-50150 \mathbf{O} δ_{CP} (degrees) Hyper-K preliminary

True normal ordering (known), HK 10 Years (2.7×10^{22} POT 1:3 v: \overline{v}) $\sin^2\theta_{13}=0.0218\pm0.0007$, $\sin^2\theta_{23}=0.528$, $\Delta m_{32}^2=2.509\times10^{-3}eV^2/c^4$

> l sigma error on δcp ~20 degree at $\delta cp = 1/2\pi$ ~7 degree at $\delta cp = 0$

s excluding sin $\delta_{CP}=0$ [%] **90** E **80** 60 50 30 δ_{CP} values (20

Astronomical neutrino search

Challenges in neutrino research below 100MeV

- Understanding backgrounds and their efficient reduction.
 - Muon spallation
 - Radioactive purity such as Radon
- Precise detector calibration (vertex, energy, direction)

Fight against background

Solar neutrino

Day-Night flux asymmetry

- Reduce spallation BG
- Control water condition
- \rightarrow well understand the BG shape
- \rightarrow modeling of position dependence

Neutrino oscillation studies

Spectrum up-turn

distance(kpc)

Supernova neutrino (burst)

Continuous operation, BG free

Supernova neutrino (diffuse)

Neutrinos emitted from past supernovae $\sim O(10^{18})$

Proton decay Fiducial volume is 8 times larger than Super-K

Detector construction

Time line

					_			
Calender year	2024				2025			
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Cavern	Excavation							
Water Tank						Tank	lining	1
50cm PMTs		2 1	-		Pro	ductio	n	1
PMT Covers	Design				Productio			
mPMTs	Design			Pro	duction			
OD	Design				Production			
Electronics	Design				oduction			
Accelerator/beam					Upgrad			
IWCD	Design							

2025 Construction of Tank Liner **Hyper-Kamiokande** Operation starts

Installation of PMTs and Electronics

Excavation

Complete in 2025

Tank construction

Mock up test for the support structure

20 inch PMT

- Purchased ~13000 PMTs so far.
- Screening test is on going for the confirmation that the quality does not depend on the production period.
- Total 20,500 PMTs will be available by Sep. 2026.
- Long term measurement is underway to calculate the failure rate of PMTs, with 100PMTs in operation for six months.

Cover for 20 inch PMT

- If a PMT is damaged, chain implosion could lead to the loss of most of the PMTs. The cover prevents chain implosion.
- Developed in cooperation with Japan and Spain.
- Demonstrated capability to prevent chain implosion in this January.
- Production will start within this year.
- PMT and cover assembly workflow will also be established in cooperation with Japan and Spain.

Electronics

- Front-end electronics placed in underwater vessel.
- Development shared among 8 countries.
- Working on a system test in/out of the water.
- Design will be finalized within this fiscal year.

Summary

- Hyper-Kamiokande is a next generation of multi-purpose water Cherenkov detector and will play a central role in particle and astro physics.
 - Neutrino oscillation : CP violation in lepton sector by long baseline neutrino experiment, mass ordering by atmospheric neutrinos, precise validation of MSW effect by solar neutrinos, and so on.
 - Neutrino astronomy : Supernova neutrinos; from explosion in nearby galaxy, from explosions around Mpc, and diffuse neutrinos from past explosions.
 - Nucleon decay, indirect dark matter, etc.
- Construction is currently underway. We are making our best efforts to start operation.

Stay tuned!