SMILE

高田 淳史 (京大理)

....

MeVガンマ線天文学とその現状 > ラインガンマ線

- 短寿命な放射性同位体 ⁵⁶Ni/⁵⁶Co, ⁴⁴Ti → 元素合成の現場
- ~10⁶年な放射性同位体 ²⁶Al, ⁶⁰Fe
 - ⇒ 元素の拡散の様子
- 電子陽電子対消滅線
- ¹²C*, ¹⁶O*の脱励起線
 - ⇒ 低エネルギー宇宙線
- ▶ 連続成分
 - シンクロトロン+逆コンプトン
 - π^0 -decay
 - → 粒子加速
 - Hawking放射 (~10¹⁶⁻¹⁷ g)
 - 暗黒物質の対消滅
 - ⇒ 新物理の探索

感度向上には大幅なS/N改善が必須

電子飛跡検出型コンプトン望遠鏡 (ETCC)

SMILE-2+ Highlights

First detection of celestial objects using ETCC

Crab Nebula [4.0σ; Takada+2022, ApJ], Galactic Center (Total ~10σ [Tanimori+2020]; Diffuse 4.3σ [Ikeda+2023]) → Achieved sensitivity is consistent with the expectation. (Successful detector demonstration)

The energy spectra are consistent with previous studies.

SMILE-2+の背景事象 SMILE-2+DGSO ☆ 天体(信号) counts/sec/cm3/ke/ Oxiside 断面図 TPC 宇宙背景ガンマ線(BG) Hitachi 放射線同位体 152Gd 13TH U/Th \sim 0.107 couts/sec/cm3 10 検出器 @700-1400keV 高度~40km 大気ガンマ線(BG) 500 2000 1000 1500 2500 10 気球高度における背景事象 T. Ikeda+, PRD 108, 123013 (2023) ▶ 大気ガンマ線 ⇒ 宇宙線と地球大気の相互作用 counts/sec/MeV > 装置由来の雑音 ⇒ 宇宙線と装置の相互作用 ▶ 内在放射性同位体 Accidental 10-1 GSO内部のU/Th系からのa線と Cosmic ray Atmospheric 大気ガンマ線が偶発同時計数 Experiment H Total BG 低エネルギー側では大気ガンマ線が支配的 10^{-} 10³ ~1 MeV付近では内在RI由来の偶発事象が支配的 Energy (keV)

高エネルギー事象の再構成手法の開発

銀河系内拡散ガンマ線とその起源

SMILE-2+からSMILE-3へ

	SMILE-2+からの改良	Method
有効面積	×5	TPCガス (2気圧 Ar → 3気圧 CF ₄) & TPC容器の曝露
エネルギー 分解能	×1.5	光読み出し回路の改良 PMT (ΔE/E~12%) → SiPM (<8%),
角度分解能	×3	機械学習に基づく飛跡解析 T. Ikeda+, 2021, PTEP
エネルギー 帯域	0.2 - 10 MeV (SMILE-2+: 0.2 - 2 MeV)	光読み出し回路のダイナミックレンジ拡大 & 高エネルギー事象解析
	μ-PIC & GE	M Vessel Vessel
Pixel Scintillator Array		

FY2023

FY2023

スターカメラ ピギーバック試験@大樹

ガス飛跡検出器内部のガス探索

ガス探索の現状

- $CF_4 + iso-C_4H_{10}$ を混合 \Rightarrow ペニング効果によるゲイン増加を期待
- CF₄に数%のiso-C₄H₁₀を添加⇒ゲインの増加を確認

まとめ

➤ MeVガンマ線天文学の発展には 雑音事象をいかに減らすかが重要 ⇒ 電子飛跡検出型コンプトン望遠鏡は最適

➤ SMILE-2+の結果:

- かに星雲を4σ、銀河中心領域を~8σで検出 📫
- 雑音事象のより深い理解
- >1 MeVでの新しい検出方法の確立

- A. Takada+, ApJ (2022)
- T. Ikeda+, ICRC2023
- T. Ikeda+, PRD (2023)

T. Oka+, NIM A (2024)

▶ 次期フライトSMILE-3:

- 2023-2024年度にかけて要素開発を進行してきた
- 2025年度からETCCの構築・試験に
- STTは2025年度にピギーバック試験を予定
- 2027年度春の豪州気球実験を目指す

Thank you for your attention! http://www-cr.scphys.kyoto-u.ac.jp

