# GRAMS

### for MeV gamma-ray astronomy and dark matter search

on behalf of the GRAMS Collaboration

CRCタウンミーティング



### 小高 裕和

大阪大学

2024年3月10日



### Gamma-Ray and AntiMatter Survey

Brining a huge liquid argon detector into the sky

- 1. an ultra-long duration balloon around late 2020s-early 2030s
- 2. a satellite-based all-sky deep survey mission in 2030s–2040s

### MeV gamma-ray astronomy

✓ Particle acceleration, thermal-to-nonthermal transition

✓ Nucleosynthesis





### **Indirect dark matter search** background-free search using antideuteron/antihelium accelerators SM DM dark matter standard model particle particle direct search SM DM indirect search

### Dark matter search with antideuteron



GAPS experiment in Antarctica (2024–)  $\rightarrow$  GRAMS (next generation)

# Sensitivity gap at the MeV band



For high sensitivity, we need a large effective area to obtain high photon statistics, and to obtain precise background estimate.



### **Black hole accretion flow in MeV**











## Liquid argon time projection chamber



**Novel approach to realize** an extremely large effective area ~2000 cm<sup>2</sup>

- 1. Adoption of liquid detector
- high density and large volume
- 2. Use in particle physics experiments
- neutrino physics
- direct dark matter search
- this technology will be deployed to space missions (balloon/satellite)



### **Event reconstruction technique**



#### Need to determine the interaction order : N!



GRAMS employs a new Compton camera concept made of only a single **Compton-thick** scatter with **no dead volume** inside the detector.

→ GRAMS detects multiple scattering events with high efficiency.

→ We have developed new Compton reconstruction algorithms to treat multiple scattering with escaping.

- 1. Physics-based probabilistic model
- Yoneda et al. 2023
- giving a benchmark model
- 2. Multi-task neural network
- Takashima et al. 2022
- outperforming after simulation learning



### Timeline



# **GRAMS** Collaboration

Barnard College Columbia University Hiroshima University Howard University JAXA Kanagawa University Nagoya University NASA/GSFC NDMC Northeastern University Oak Ridge National Lab Osaka University RIKEN UCB/SSL University of Tokyo UT Arlington Waseda University Washington University Würzburg University Yokohama National University



### **US-Japan Interdisciplinary Team** X-ray/gamma-ray astronomy, accelerator, neutrino/dark matter experiments

#### 7th Collaboration Meeting, May 2024, Boston



#### **1st GRAMS Collaboration Meeting** July 2019, Nevis Lab, NY



# eGRAMS: Engineering flight in Japan

### The world's first balloon flight of a LArTPC

- of radiation environments



Charge preamp

**10 cm** 

PMT

Gondola: 1.2 m

LArTPC







### Particle-ID demonstration J-PARC/T98



LArTPC for anti-particle beam test at J-PARC To evaluate the capability of anti-particle identification using anti-proton at J-PARC K1.8BR beam line.





### **Preliminary results from J-PARC/T98**







# T98 Phase-2: February 2025 antiproton: 0.7 GeV/c

**Successfully obtained TPC event data** 



### **Concept studies with NanoGRAMS prototype**





• Four 4×4 arrays covers 5×5 cm<sup>2</sup> Hamamatsu S13361-6075AE-04 × 4

#### NanoGRAMS for gamma-ray imaging test





#### **Electron readout**

- VATA-SGD ASIC
- 64 channels/chip
- ENC: 180 e<sup>-</sup> at 6 pF (RMS)
- heater

#### Anode pad

- 16 × 16 pixels
- $51.2 \times 51.2 \text{ mm}^2$
- pixel pitch: 3.2 mm
- flexible board

#### SiPMs





# Whet's next: pGRAMS

The next important step is a prototype of flight of a scientific LArTPC called MiniGRAMS with a size of  $30 \times 30 \times 20$  cm<sup>3</sup>.

- ✓ NASA/APRA funded
- ✓ planned for launch in 2026 in Arizona

### **MicroGRAMS**—a prototype LArTPC

- TPC size:  $10 \times 10 \times 10$  cm<sup>3</sup>
- Tile/pads for x-/y-directions ~3 mm pitch
- 60 cryogenic charge preamps operated in 87K liquid argon
- $\checkmark$  16 SiPMs at the bottom, 6 mm x 6 mm each





## **Concluding remarks**

- antiparticles.
- LArTPC.
- The first engineering balloon-borne experiment in Japan, 2023 was successful.
- Several types of detector prototyping are ongoing in US and Japan.
- $\bullet$
- The next step will be a prototype flight of MiniGRAMS in Arizona in 2026.

GRAMS will bring a huge LArTPC into sub-orbital and space-based missions for exploring both MeV gamma-ray astronomy and background-free indirect dark matter search with

An unprecedentedly large effective area for gamma rays and antiparticles will be realized with a

We demonstrated anti-proton identification using J-PARC beam (very preliminary, 2025 Feb).