Mega ALPACA

Takashi SAKO (ICRR)

2024年度第一回CRCタウンミーティング@柏キャンパ

Mega ALPACA計画

- Tibet AS γ で実証され、ALPACAで利用する地下水 チェレンコフミューオン検出器(MD)を利用して、ハ ドロン/ガンマ弁別
- 未来の学術振興構想(2023年版)
 グランドビジョン18. 宇宙における天体と生命の誕生・共進化の解明

162. 南天におけるPeV領域ガンマ線広視野連続観測(Mega ALPACA)

OTINICITY OF	- UBU - +	面1~32
COUNCIL	No.	学術の
	156	宇宙望 文学で
	157	惑星科 宇宙望
	158	国際電
	159	惑星間 の創成
大学派公	160	CTA DE
	161	30m 光 の革新

W T	間に切りの大伴に王中の絶王・大臣にの州引	
No.	学術の中長期研究戦略の名称	提案者
156	宇宙望遠鏡 JASMINE による近赤外時系列位置・測光天 文学で拓く天の川銀河と系外惑星の探究	波部 周一(自然科学研究機構・固立天文台上席教授、日本 学術会諸連携会員)
157	惑星科学、生命圏科学、および天文学に向けた紫外線 宇宙望遠鏡計画 (LAPYUTA)	中村 昭子(日本惑星科学会会 長)
158	国際電波望遠鏡計画 SKA1 による現代天文学の開拓	常田 佐久(自然科学研究機構 国立天文台台長、日本学術会議 連携会員)
159	惑星間宇宙望遠鏡による新時代のダストフリー天文学 の創成	高橋 功(関西学院大学・理学 部学部長)
160	CTA 国際宇宙ガンマ線天文台	中畑 雅行(東京大学·宇宙線 研究所所長、日本学術会議連携 会員)
161	30m 光学赤外線望遠鏡 TMT による天文学・宇宙物理学 の革新と太陽系外惑星における生命の探求	川合 異紀(大学共同利用機関 法人自然科学研究機構機構長、 日本学術会議連携会員)
162	南天における PeV 領域ガンマ線広視野連続観測(Mega ALPACA)	中畑 雅行(東京大学·宇宙線 研究所所長(教授)、日本学術 会議連携会員)
163	NASA 6m 紫外線可視近赤外線望遠鏡 Habitable Worlds Observatory への参加	佳 貴宏(大阪大学理学研究科 教授、日本学術会議連携会員)
164	POEMMA 超高エネルギー粒子 (<i>ν</i> ・宇宙線)の紫星軌道 からのステレオ観測	緑川 克美(理化学研究所・光 量子工学研究センターセンタ 一長)
165	多波長・マルチメッセンジャー観測による初期宇宙探 杏・編開時空炉杏	和田 隆志(国立大学法人金沢 大学学長)

162	南天におけるPeV領域ガン マ橋広視野連続観測(Mega ALPACA)(Wide Field-of- View PeV Cosmic Gamma- Ray Survey in the Southern Sky (Mega ALPACA))	マルチメッセンジャー天文 学の欠けたワンビースであ る南天でのPevガンマ電子 観測を実現することで、宇 留 編を利用した宇宙・素粒 子原子核・太陽地球物理、 者古学、防災時の多彩な 学術研究領域を発展させ る。	研究計画	南天におけるPeV領域ガン マ緒広世野連続戦測 (Maga ALPACA)(Wide Field-of-View PeV Cosmic Gamma-Ray Survey in the Southern Sky (Mega ALPACA))	南米アンデス山脈の高地 に総面積1平方キロメート 小の観測装置を設置し、本 開拓の南天におけるPeV (可視光の1000兆倍のエネ ルギー)領域宇宙ガンマ線 の広視野運発観測を世界 最高感度で行う。	宇宙線をPeV領域まで加 速している宇宙粒子加速 天体の発見とその正体の 解明、PeV銀河系内拡散の 料明、宇宙線の観測による宇宙 線の観測による宇宙 明、宇宙線中の太陽の影 の観測による宇宙天気予 報等が期待される。	マルチメッセンジャー天文 学を通して、「人類の知の 地平を開くことに資する。 また、巨大人類の力に化学う磁気点の到来は、社会イ ンプトロックの大骨威である が、宇宙天気を戦の新た なプローブとして社会に貢 献する。	(Elobal R9-R14:建設期間 R10-R14:部分運用 R15-R25:本格運用 [原要表費] 総編40億円 [実洗機関と実施体制] 東大.積浜国大.神奈川大、宇都宮大、信州大、大阪公大、暮園サンアン ドレス大、国工作規学研、中部大、都立度技高等、日大、理研、原子力機 構、大阪電通大、広島市立大、墨図グアダラハラ大等 2	18

Mega ALPACAデザイン

 南米・アンデス山中に1km²(1Mm²)の地表+地下ハイブ リッドアレイを建設し>PeVガンマ線放射天体を探索

ボリビアに 82,800m²のALPACAを建設中。南天sub PeVガンマ線天文学を開始する。

=> Mega ALPACAのプロトタイプ開発

ALPACAサイト近くの候補地

PeV: 電磁波観測のエネルギーフロンティア = 銀河系内宇宙線の加速限界

4PeV/電荷まで粒子加速する天体は?
 4PeV/核子 + ISM -> O(0.4PeV光子)
 ⇒ sub-PeVから PeVのガンマ線スペクトル
 観測でkneeの起源(銀河系内宇宙線の加速限界)を解明

- 4PeV/核子を超える天体は?
- 近傍銀河のガンマ線観測
- 原子核成分質量組成測定
- 暗黒物質崩壊
- 太陽圏の物理・宇宙天気予報

(D'Enterria et al., Astropart. Phys., 35,98-113, 2011)

γγ吸収

1PeV光子の吸収長は10kpc

銀河系内が主要な観測対象

(γγ反応の最高エネルギーでの検証)

Attenuation due to Pair Production

Vernetto+, PRD, 94, 063009 (2016)

FIG. 12. Survival probability of gamma rays for a trajectory from the GC to the Sun, plotted as a function of the gamma ray energy. The contributions of different radiation fields are shown. The inset shows the contributions of starlight, infrared radiation with wavelength $\lambda < 50 \ \mu$ m and EBL.

Dark Matter Halo (E>400TeV)

 10^4 10^5 10^6 10^7

E [GeV]

108

IceCube 2014 - - -

10

10

10⁻¹

100

 10^2 10^3

Background Noise

FIG. 1 (color online). Diffuse all-flavor neutrino and γ -ray intensities expected in the VHDM scenario. The ES13 model is assumed with $r_{me} = 3.0 \times 10^{-5}$. The total (thick dashed line) and extragalactic (thin dashed line) contributions to the cumulative neutrino background are shown with the observed data. The expected γ -ray background is also shown (thick solid) with the latest *Fermi* data. We also show contributions of extragalactic cascaded γ rays and direct γ rays from Galactic VHDM, which are not affected by uncertainty of Galactic vHDM,

KASCADE and CASA-MIA 7-ray limits are indicated.

低バックグラウンド(宇宙線)ノイズでの観測

Starburst Galaxy: Centaurus A

宇宙線異方性のエネルギー依存

11

→ Mega-ALPACA で半日ごとに影の変化をモニター! 宇宙天気予測への応用

コロナ質量放出(CME)の事前予測

sub-PeVガンマ線観測の確立

Tibet AS γ Collaboration, PRL 123, 051101 (2019)

- TibetASγ実験が地下ミュー粒子検出器
 で p/γ弁別に成功
- 2019年に世界で初めて>100TeVガンマ 線天体(かに星雲)を報告

Gamma-ray sky

ALPACA

(<u>Andes Large area PA</u>rticle detector for <u>Cosmic ray physics and A</u>stronomy) Mt. Chacaltaya, Bolivia

UMSA CR Observatory 5200 m a.s.l.

La Paz

ALPACA site 4740 m a.s.l.

4,740 m above sea level (16°23´S, 68°08´W)

ALPACA Air Shower Array

- ✓ Cosmic-ray BG rejection power >99.9% @100TeV.
- ✓ Angular resolution ~0.2° @100TeV, Energy resolution ~20%@100TeV
- ✓ 100% duty cycle, FOV θ_{zen} <40° (well studied), θ_{zen} <60° (in study)

58 m² Muon Detector x (16+48) (3 700 m²)

ALPAOUITA

ALPACA Construction Plan

ALPAQUITA Air Shower Array

¹/₄ALPACA-scale air shower array 1m² scintillation detector x 97 with 15m spacing Effective area ~18,000m²

<u>Air Shower Trigger Condition :</u>

Any 4 (Any3 since Jun 2024) detectors with >0.6 particles within 600ns

→ Rate ~280Hz @ CR mode energy ~7 TeV Counting Mode Condition :

Any1, Any2, Any3, Any4 rates every 0.1 sec

1m² 5mm lead plate 1m² Scintillator (50cm x 50cm x 5cm x4)

Inverse pyramid shape Stainless steel box (White painted inside)

2-inch PMT x1

Construction status: 2022 Jun. Deploy detectors 2022 Sep. Partial operation 2023 Apr. Full operation

Moon Shadow

NORTH

SOUTH

- Shadow of the moon is clearly detected at $>8\sigma$
- Evolution of the deficit depth suggests the angular resolution of 1.1 degree (mode energy = a few TeV)

Performance of ALPAQUITA Even-Odd Method

Even-Odd opening angle : Opening angle between directions determined by two independent arrays (even and odd arrays)

٠

Angular resolution $\sigma_{50} = \Delta \theta_{OP} \; / \; 2 \; = \; {\sim} 1^{\circ}$

Event selection criteria:Zenith angle < 40deg

In Array flag = on

1.25 Any 4 flag = on Residual error < 1.0

Data-MC comparison

- · Detector calibration data are taken into account
- Good agreement between experimental data and MC
- Air shower array shows expected performance

Heart of the experiment ~Underground muon detector~

PROYECTO "ALPACA" FACULTAD DE CIENCIAS PURAS Y NATURALES UNIVERSIDAD MAYOR DE SAN ANDRES

OCTUBRE 2023

- Long discussions with Bolivian design companies => fixed
- Public call for construction company soon
- Construction of the 1st MD will start in 2025
- First gamma-ray sensitive observation starts in 2025

ALPAQUITA/ALPACAの感度

Site photo + CG image of MD by design company

- 2025年に地下ミューオン検出器(1台目)を完成
- 2026年にALPACA全体を完成
- ALPAQUITA 1年の観測で、数個の既知のTeV天体から>100TeV (sub-PeV)ガンマ線を検出可能
- ALPACA 1年の観測で、既知のTeV天体半分を >100TeVで検証可能

まとめ

- ・ Mega ALPACAは、南半球 PeVガンマ線天文学を開拓する計画
 - 「銀河宇宙線の起源」をガンマ線で探る
 - 銀河中心方向の拡散ガンマ線観測、宇宙線分布の解明
 - ミュー粒子を用いた原子核種組成解析
 - 南半球中緯度で初の宇宙線異方性解析
 - 近傍銀河の粒子加速を検証
 - 暗黒物質起源ガンマ線の観測、最高エネルギーでの光子光子反応
 - 太陽活動に伴う宇宙線変動、宇宙天気予報への活用
- ・ ALPACAによる南半球・ボリビアでの空気シャワーアレイ実現、実証
 - ALPAQUITA地表アレイが運転中
 - 地下ミュー粒子検出器1号器を今年建設予定
 => 南半球 sub PeVガンマ線天文学を開始
 - 引き続きフルスケールのALPACAを建設

Mega-ALPACA 科学目標

- ・銀河系内PeV宇宙線起源(ペバトロン)候補のカタログ (銀河中心領域、星形成領域、超新星残骸…)
- 銀河面からのPeV領域拡散ガンマ線の詳細観測

→ 銀河宇宙線の起源・伝搬・加速機構・加速限界の解明へ

- 近傍スターバースト銀河の宇宙線加速の証拠発見
- 銀河ハロー超重ダークマターの探索
- •太陽圏とその近傍における宇宙線の流れの解明
- 宇宙線を利用した太陽近傍磁場の構造解析
- 宇宙線を用いた宇宙天気予測の実用化

南天における観測対象

- ・銀河系内のペバトロン候補
 - Westerlund 1 (Massive star cluster)
 - 銀河系中心領域(Central molecular zone)
 - H.E.S.S. 天体 (UNID, SNR, PWN…)
- ・銀河面からの拡散ガンマ線
- ・銀河系中心ダークマターハロー
- ・近傍銀河天体(スターバースト銀河)
 - Cen A, NGC 253, LMC
- ・ 宇宙線異方性の精密観測
- "太陽の影"による宇宙天気予測 ※但し、高密アレイが必要 +3000SDs

Westerlund 1 (Massive Star Cluster)

Galactic Center

- ✓ Distance 8 kpc
- ✓ Diffuse component
- ✓ Good PeVatron candidate

 $\frac{E_{\max}^{\gamma}}{E_{\max}^{p}} \sim O(1/10)$

Starburst Galaxy: NGC 253

- ✓ Distance 3.5 Mpc
- ✓ Spiral galaxy
- ✓ Hard spectral index
- ✓ Origin of UHECRs?

宇宙線異方性の観測 Tibet ASy(北天)

36

宇宙線異方性の観測(南天)

太陽の影の有意度の見積もり

- 20 σ / 150 days by Tibet-III @極小期
- Tibet-III 22,000 m² @>3TeV 0.9°
- Mega ALPACA Dense (15 m spacing) 100万 m² @>5TeV 0.9°
 → 宇宙線の統計45倍

→ 20 σ*sqrt(45)=134 σ / 150days @>3TeV@極小期 →134/sqrt(150)=11 σ/day(=8hours) = 4 σ/hour

SWGO, UHECR2024 presentation

Site Pampa la Bola Parque Astronómico San Pedro Atacama 4770 m a.s.l. Space for multiple km² You are here Next steps: Pathfinder and SWGO-A -22.940 -22.942

Target: LHAASO size array Site: primary candidate, San Pedro Atacama Pathfinder: 100m array

-67,6900 -67,6875 -67,6850 -67,6825 -67,6800 -67,6775 -67,6750 -67,6725 -67,6700 -67,6675 Longitude [*]