

KI and K. Jani, Springer (2022)

Slide 3

LISA, TianQin, Taiji では獲得されない<mark>編隊飛行技術</mark>に先行着手(SILVIA) 高精度編隊飛行が達成できれば、KAGRA等地上で培われたFabry-Perot干渉計が軌道上で実現(B-DECIGO/DECIGO)

LISA

Laser Interferometer Space Antenna

日本からの機器貢献活動

断念しました

経緯

- 2018年10月、LISA Consortium member に登録、11名、グループリード:和泉 理論グループも独立に登録、8名、グループリード:佐合
- 2018年10月、CRCタウンミーティングにてLISA貢献の趣旨説明
- 2018年11月、同上
- 2019年3月、宇宙理学委員会LISA WG設立、主查:和泉
- 2019年12月、CRCタウンミーティング報告
- ・ 2020年12月、活動をフォトレシーバの開発に一本化
- 2021年8月、 CRCタウンミーティング報告
- 2021年夏季、日本貢献提案が secondary option とすることを LISA SPCワークショップで決定 引き続き2022年度も供給可能性を模索することをコンソーシアムに連絡
- 2023年12月、宇宙理学委員会へLISA WGの活動終了を報告

日本提案が secondary option となった理由

- 欧州グループ(ベルギー・蘭)の提案を第一候補と扱う、というLISA SPCの考え方にもとづく
- 日本からの提案は欧州グループの提案に対して性能的には優れている部分があったものの、プログラム的な観点で評価してもらえなかった。
 Slide 6

活動の遺産: 将来の国際協調時の交渉カード獲得

宇宙対応・低雑音InGaAs PINフォトダイオードアレイ

- 浜松ホトニクス社に新規特注開発いただいた(P. Colcombet+, IEEE Trans. Nucl. Sci., 2024)
- 2025年現在、複数の海外ミッションから搭載相談がくるなど分野内外で評価

LISAへの実質的な貢献と国際的ビジビリティ向上

• 小森(東大)らによる回路トポロジー提案がLISAのベースラインとして採用された

• 発表論文

- 1) P. Colcombet, ..., K. Izumi, K. Komori, et al., "Radiation Tolerance of Low-Noise Photoreceivers for the LISA space mission", proceedings of RADECS2023 conference, arXiv:2310.09809
- 2) G. F. Barranco and G. Henzel, "A DC-coupled, BHT-Based Transimpedance Amplifier for the LISA Quadrant Photoreceivers," IEEE Transactions on Aerospace and Electronics Systems, 57, 5, 2899 (2021)
- 3) K. Izumi, et al., "The current status of contribution activities in Japan for LISA," Prog. Theor. Exp. Phys., 2021, 5 05A106 (2020)
- 学会発表等
- a) K. Izumi, ``LISA and Instrument Contributions from Japan," RESCEU workshop for space gravitational-wave detection, Univ. Tokyo (2019)
- b) K. Izumi et al., "QPR development in Japan," The 4th LISA consortium meeting, Univ. of Florida, Gainesville, FL, USA (2019 年 4 月)
- c) 和泉究ほか,「スペース重力波望遠鏡 LISA に向けた機器開発」,日本天文学会秋季大会,熊本大学,V2-0242-a, (2019 年 9 月)
- d) 和泉究ほか,「スペース重力波望遠鏡 LISA への参加」,第 63 回宇宙科学技術連合講演会,アスティ徳島,1N07(2019 年 11 月)
- e) 小林雅人ほか「宇宙重力波望遠鏡 LISA のためのフォトレシーバ開発」,宇宙科学シンポジウム、宇宙科学研究所,ポスター発表 P2.61(2020 年 1 月)
- f) 和泉究ほか,「低雑音大口径広帯域 InGaAs フォトレシーバ」・天文学に関する技術シンポジウム,ポスター発表 P13,国立天文台(2020年1月)
- g) 小林雅人ほか,「宇宙重力波検出器LISAのためのフォトレシーバーの開発」日本物理学会春季大会,名古屋大学,17ak16-3(2020年3月)
- h) Nicoleta Dinu-Jaeger and QPR working group, ``Overview of Quadrant Photoreceivers development for LISA," the 13th LISA symposium, online (2020年9月)
- i) 岡坂洋輝ほか、「LISA搭載用フォトレシーバの開発」、日本物理学会秋季大会、オンライン開催、15pSM-12 (2020 年 9 月)
- j) 和泉究ほか,「スペース重力波望遠鏡LISAへの参加(2)」,第64回宇宙科学技術連合講演会,オンライン開催,3B04(2020年10月)
- k) 岡坂洋紀ほか,「LISA搭載用フォトレシーバの開発(2)」日本物理学会春季年会14pW3-7(2021 年 3 月)
- I) 和泉究ほか,「スペース重力波望遠鏡LISAのための機器開発:フォトレシーバ」日本天文学会春季年会, V217a(2021年3月)
- m) 小森健太郎ほか,「宇宙重力波望遠鏡 LISA のための広帯域低雑音光検出器の開発」日本物理 学会秋季年会 14aW3-9(2021 年 9 月)
- n) 和泉究ほか「宇宙重力波アンテナLISAへの日本の参加」宇宙科学シンポジウム・ポスター発表, P-152 (2022 年 1 月)
- o) 小森健太郎ほか「宇宙重力波望遠鏡LISAのための広帯域低雑音光検出器の開発」宇宙科学シンポジウム・ポスター発表, P-152(2022 年 1 月)
- p) 和泉究「マルチメッセンジャー天文学と将来への展望」宇宙科学シンポジウム・企画セッション講演, S7-004(2022年1月)
- q) 内藤隆人ほか,「遺伝的アルゴリズムによるフォトレシーバ回路設計 重力波望遠鏡への応用 -」, 22pW3-8 (2023年3月)

SILVIA

SILVIA

(Space Interferometer Laboratory Voyaging towards Innovative Applications)

新時代の高精度天体観測手法である宇宙干渉計の実現に 必須となる超高精度FF技術の軌道上実証を目指す

✤ JAXA公募型小型計画として提案

。提案2020年2月

○ 強化型イプシロンロケット打上げ想定

* 工学実証衛星

。超高精度の編隊飛行(FF)

○ 衛星間レーザー干渉計

SILVIAの立ち 位置

編隊の高精度化をねらう

Slide 11

SILVIA 現状

宇宙科学研究所プリプロ準備候補チームとして絶賛活動中公募型小型計画として2030年代初頭の打上げを目指す

- ・2023年:公募型小型5号機ダウンセレクションを受審、不採択
- ・2024年:新体制へ、PI:伊藤琢博 (JAXA)、チーム長:和泉 (JAXA)
 - チーム編成: 42名 (JAXA、東大、電通大、法政大、阪大、名大、京大、国立天文台)
 - ミッションのスコープ(最低限達成すべき成果)を調整変更
- •2025年:
 - ・1st論文を近々投稿予定。技術情報を公開する方向へ。
 - ・2026年想定のダウンセレクションの再受審を目指す

DECIGO

This is what DECIGO will do

DECIGO

Deci-hertz Interferometer Gravitational Wave Observatory

- A space laser interferometer concept proposed in 2001 [1]
- Fill the gap between the ongoing space interferometer antenna (LISA, TianQin, Taiji) and terrestrial detectors
- Confusion noise expected to be low
 - Enabling extremely high sensitivity
- Fully exploit the multi-band gravitational wave observation
- Highly rewarding but challenging
- DECIGO working group
 - Leader changed from Prof. Kawamura to Prof. Ando in April 2024
 - 101 members (as of 2022 Dec.)

Pre-conceptual design

- Arm length: 1,000 km
- Inter-satellite Fabry-Perot
- Mirror diameter: 1 m
- Laser wavelength: 515 nm
- Finesse: 10
- Laser power: 10 W
- Mirror mass: 100 kg
- S/C: drag free
- 3 interferometers
- Heliocentric orbit
- 4 clusters

Science Cases

Slide from S. Kawamura

Intermediatemass BH

Forecast of BNS coalescence

Takahashi, Nakamura APJ 2003

> Primordial GW

Acceleration of expansion of Universe

18/2/

Thermal history of early Universe

- Reheating energy scale provides hints for inflatons
 - Thermal history of early Universe
- Reheating energy scale changes the transfer function
 - Resulting in different PGW spectra [1]
- Complementary to ongoing CMB experiments
 - LiteBIRD, ground-based CMB expreiments
- Additionally a variety of experiments
 - Parity violation [2]
 - Searches for vector and/or scalar modes [3]

[1] Nakayama+ JCAP 2009
 [2] Seto 2007
 [3] Nshizawa+, 2010

Figure Kuroyanagi+, Phys. Rev. D 83, 043514 (2011)

Recent conceptual studies

filter

- Optimization of quantum noise using quantum locking [2-4, 7]
- Noise studies on inter-satellite Fabry-Perot cavities [1][5]
- Acousto-optic deflector for satellite positioning [7]
- Demonstration of dual-pass Fabry-Perot [6]

K. Tsuji+, Galaxies 12(2) 13 (2024) FP
 K. Tsuji+, Galaxies 11(6) 11 (2023)
 T. Ishikawa+, Phys. Rev. D 107 022007 (2023)
 T. Ishikawa+, Galaxies 9(1) 14 (2021)
 S. Iwaguchi+, Galaxies 9(1) 9 (2021) FP
 K.Nagano+, Class. Quantum Grav. 38 085018 (2021)
 R. Yamada+, Phys. Lett. A 384(26) (2020)
 M. Musha+, ICSO proceedings, SPIE (2019)

読み上げ割愛

Slide 21

credit: B-DECIGO/S.Sato

B-DECIGO

B-DECIGO

Astrophysically meaningful, yet paving the way towards DECIGO					
		B-DECIGO	DECIGO	FP cavity	AR AR
	Interferometer type	Differential Fabry-Perot	Differential Fabry-Perot	Photo- detector	+ 0
	Arm length	100 km	1,000 km		
	Mirror diameter	30 cm	1 m		
	Laser wavelength	515 nm	515 nm		
	Finesse	100	10		
	Laser power	1 W	10 W		
	Mirror mass	30 kg	100 kg		
	S/C	Drag-free controlled	Drag-free controlled		
	Orbit	(TBD)	Heliocentric, cartwheel		
	# of clusters	1	4	Slide 23	

Science objectives

- Observation of NS-NS (BH) binary
 - Forecast BNS (or NS-BH) coalescence
 - 100 /year
- Revelation of origin of ~30 M BBH (Nakamura+ 2016)
- Better parameter estimation of binaries (Isoyama+ 2018)
- Removal of foreground for DECIGO
- Verification of technologies for DECIGO

Multi-wavelength observation

T. Nakamura+ Prog. Theor. Exp. Phys 093E01 (2016)

Astrophysical reach

Caveat: unofficial

26

Progressing technologies for B-DECIGO

Bi-directional interferometer

Low-noise thruster

High-power stabilized laser

B-DECIGO in 日本学術会議・未来の学術振興構想

2023年9月26日:日本学術会議HPで公表

https://www.scj.go.jp/ja/info/kohyo/kohyo-25-t353-3.html

グランドビジョン19 自然界の基本法則と宇宙・物質の起源の探究

CRCタウンミーティングでの議論とCRCからの推薦、 天文・宇宙分科会での議論と推薦など、 サポートいただいた

図 20 本グランドビジョンに関係する実験・観測プロジェクトの俯瞰

(出典)本提言にて、独自に作成

提言「未来の学術振興構想(2023年版)より

Let's talk about future

日本天文学会、天文月報2024年7月号

◆◇◆◇◆◇ シリーズ: 2040年代のスペース天文学へ ◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇◆◇

精密編隊飛行が切り拓く 新しい天文学

松尾太郎¹・和泉空²
◇¹名古屋大学〒464-8604名古屋市千種区不老町〉
◇²宇宙航空研究開発機構宇宙科学研究所〒252-5210相模原市中央区由野台〉
e-mail: ¹matsuo@u.phys.nagoya-u.ac.jp, ²kiwamu@astro.isas.jaxa.jp

図3 赤朳線ナル空宙王渉計 (LIEE) までの道筋