

Doctoral Dissertation

TeV Gamma-Ray Emission across the Galactic Center Ridge with the First CTA Large-Sized Telescope

CTA大口径望遠鏡初号機で観測する 天の川銀河中心リッジに広がる TeVガンマ線放射

阿部 正太郎 / Shotaro Abe

ICRR, UTokyo, starting JSPS PD here next month shotaro@icrr.u-tokyo.ac.jp

General Introduction

The Next-Generation Gamma-Ray Observatory

Cherenkov Telescope Array Observatory

image: https://www.flickr.com/photos/ctao-universe/3283505673

Rendered Image of the CTAO North Site @ La Palma, Spain (28° N, 17° W)

MAGIC (17 mφ)

MST (11.5/9.7 mφ) LST (23 mφ)

The First Large-Sized Telescope

LST-1

- inaugurated in 2018 - taking scientific data ____in parallel with our commissioning

d we are building more! o: LST-3 Dish Lifted (June 2024)

Morphological/spectral studies of the Galactic Center play an essential role in understanding cosmic-ray propagation and searching for WIMP dark matter.

Stringent Constraints on WIMP dark matter fig: MAGIC, PRL 130:061002, 2023

My motivation lies in the TeV diffuse emissions in the Galactic Center region, which require to develop a new observation/analysis.

2018	LST-1 inaugurated in Oct. the first light recorded in Dec.	what was technically missing at the beginning of this doctoral researcl		
me 2019	science data taking started.	Large Zenith Angle Observation		
$\begin{array}{c} 20 \\ M \\ 2021 \\ 22 \\ 0 \\ 2023 \\ 0 \\ 25 \end{array}$	first observations of the Galactic Center. Sgr A* detected with a point-source analysis. LST-1 performance paper published, <u>focusing on typical zenith/off-axis angles</u> .	 performance understanding MC/Obs consistency Extended Source Analysis following the official analysis stages applicable even up to 100 TeV. 		
	— Technical Themes ———	Scientific Themes		

Large Zenith Angle Observation
 Extended Source Analysis

Galactic Center Diffuse Emission

► ③ PeVatron, WIMP DM, ...

Large Zenith Angle Observation

Intro: Large Zenith Angle (LZA) Observation

When observing a source at low altitude, telescope performance is quite different from typical observations; need to quantify/test this operation mode.

- + **increased collection area** by an order of magnitude
- + decreased image leakage at higher energy, leading to better reconstruction
- performance very sensitive to Zd even within the field of view
- increased energy threshold to a few hundreds of GeV or even higher

Parameter spectra were compared between γ-ray MC and Crab Nebula excess, ensuring the good MC/Obs consistency even at the large zenith angles.

Size

= total number of photoelectrons after image cleaning showing the consistent energy scaling

Theta Squared

= angular separation between true/estimated position a slight discrepancy: $\Delta \sigma \sim 0.03$ deg in the King function.

Extended Source Analysis

Intro: 3D Analysis of Extended Sources (Forward Folding)

The 3D Analysis of extended sources needs a model of residual background across the FoV.

The residual background is characterized in the camera (and Alt/Az) frame. Masked signal regions are covered by different pointings (*wobble* partners).

The background modeling and sky map technique were tested with Crab Nebula data; demonstrating that our approach works well.

Using dedicated MC simulations & test observations of Crab Nebula, this study enabled the full use of the large zenith angles and the whole field of view.

- <u>New Capabilities of LST-1 Uncovered: Large Zenith Angle Observations</u>
 - Effective Area: ~10⁶ m² at E > 10 TeV
 - Angular Resolution: ~0.08 deg at best
 - Detection Sensitivity: enhanced at energies above 1 TeV / offset angles above 1 deg
- Successful Background Modeling and Extended Source Analysis
 - Sky Map: the residual uncertainty is as suppressed as the statistical deviation
- Good Consistency throughout Tests with Crab Nebula
 - MC/Obs: well consistent shower-image parameters; PSF widening of 0.03 deg
 - SED: well consistent with other measurements: systematic uncertainty: < 15% energy scaling, < 20% normalization.
 - LC: stable across the zenith, energy, and offset: residual run-wise flux uncertainty ~10%.

Previous VHE Views towards the Galactic Center

Intro: PeVatron Scenario

HESS 2016 (followed by HESS 2018 & VERITAS 2021) obtained suggested Sgr A* was the primary PeVatron for the Galaxy.

16

PacMan

Galactic longitude (degre

+00.0 -00.2

However, <u>MAGIC 2020</u> suggested a 2σ -hist for a spectral cut-off in the diffuse component; and <u>HAWC 2024</u> reported a much softer spectrum.

Findings and interpretations that the current-generation telescopes reported are not well consistent with one another.

	HESS (2016, 2018)	MAGIC (2020)	VERITAS (2021)	LST-1 (This Study)
Pac Man	Power Law	Not Reported	Not Reported	
total ridge	Power Law	Cut-off at 20 TeV	Power Law	2
CR longitudinal profile: r⁻¤	alpha = 1.10 ± 0.12	alpha = 1.2 ± 0.3	Not Reported	
Zenith Angle	Low Zd	Large Zd	Large Zd	Large Zd
Field of View	5.0 deg	3.5 deg	3.5 deg	4.5 deg

We provide the best observations of the TeV Diffuse Emissions!

Galactic Center Studies with LST-1

20

*Significance in this study: >398 GeV **cf. <u>MAGIC 2020</u> (100hr, >1 TeV): Sgr A*: 480, G0901: 110, Arc: 6.40, Diffuse: 170.

Result: Clear & Wide View of LST-1 (39 hr)

21

The longitudinal profile obtained at -0.2° < b < 0.2° demonstrates that the current set of models generally describes data well.

Aligned with <u>MAGIC 2020</u>, the sectral cut-off at Ecut ~ 24 TeV is preferred with a significance of 2.80.

Attained the first spectral differentiation of the Gal. Center diffuse components, reasonably solving the discrepancy among the previous measurements.

• New and Clear view with LST-1

- detection significances of G0.9+0.1 and the ridge diffuse higher than <u>MAGIC 2020</u>.
- Quasi-constant CR diffusion from Sgr A* reconfirmed
 - the two analysis approaches both favor the 1/r profile over the flat and $1/r^2$ profiles.
- Spectral cutoff of the diffuse ridge emission
 - estimated to be at 24 TeV with a significance of 2.8σ.
- No sign of cutoff in the PacMan region, suggesting a presence of PeVatron
 - yielding the lower bound of 46 TeV at a 90% confidence level.
- Sgr A* might be a PeVatron in the more limited time window
 - PeV CRs might be supplied from Sgr A* only 10⁴ years ago?

Conclusion

Uncovering the new potential of LST-1 across the field of view, this study *resolves* the diffuse emissions across the Galactic Center ridge.

Technical Contributions

- New Capabilities of LST-1 Uncovered
- Successful Background Modeling and Extended Source Analysis
- Good Consistency throughout Tests with Crab Nebula

Future Prospects:

- technical developments are beneficial for many sources as well (e.g. TeV Halo)
- GalCent studies: doubling data will bring about a cutoff significance of 4σ.

Scientific Contributions

- New and Clear view with LST-1
- Quasi-constant CR diffusion from Sgr A* reconfirmed
- Spectral cutoff of the diffuse ridge emission
- No sign of cutoff in the PacMan region, suggesting a presence of PeVatron
- Sgr A* might be a PeVatron in the more limited time window

New Studies as a Postdoc

Higgsino Search

Higgsino search with CTAO-N is *the* impending effort. New paper under collaboration review now, stay tuned!

Discovery TS

- Targeting WW & γγ/Zγ from thermal Higgsino annihilation (1.1 TeV).
- <u>N. L. Rodd+ 2024</u> (right figures): with 500h CTAO-S observations, Potential detection >3σ, or even >5σ.
- CTAO-S full operation: 2030s.
 CTAO-N (4 LSTs) starts in 2026
 - early accumulation of exposure at large zenith angles
- New paper under collaboration review (and will present in ICRC). Stay tuned!!
 - detectability study with CTAO-N/S considering their realistic timeline

