

The measurement of the highest-energy cosmic ray energy spectrum with the extended surface detector array of the Telescope Array experiment

(TA 実験拡張地表検出器アレイによる 最高エネルギー宇宙線エネルギースペクトルの測定)

- 2024年3月博士課程修了 (東京大学理学系研究科物理学専攻,宇宙線研究所)
- 現在: Institute of Physics, Academia Sinica

藤末 紘三(ふじすえ こうぞう)

1912年: V. Hessの気球実験 (宇宙線の発見) 1960年代: E > 10¹⁸ eV **の宇宙線 (UHECR)** 初観測 推定 E > 10²⁰ eV 以上のUHECRも観測

発見から60年以上たった現在もその起源は未だ不明

1912年: V. Hessの気球実験 (宇宙線の発見) 1960年代: E > 10¹⁸ eV の宇宙線 (UHECR) 初観測 推定 E > 10²⁰ eV 以上のUHECRも観測

発見から60年以上たった現在もその起源は未だ不明
・ 観測的な難しさの一つ: low flux

Telescope Array (TA) 実験: Obs. area ~700 km², started obs. in 2008

HECR

UHECRの観測: 空気シャワー観測

UHECRが大気原子核とぶつかり 生成される空気シャワーを地上で観測

https://www.hisparc.nl/oud/fileadmin/HiSPARC/ werk van stydenten/UHECRs-thesis-JDHaverhoek.pdf

SD array

- ・UHECRによる空気シャワー観測の2つの手法:
 - ・地表検出器 (Surface detector, SD)アレイ
 - •大気蛍光望遠鏡 (Fluorescence detector, FD)
- ・SD: 空気シャワー粒子の**横方向分布**を観測
 - \bigcirc duty cycle ~ 100%
 - × エネルギー推定がシミュレーション依存
 - × 縦方向発達を直接観測できない (質量組成に直接感度を持たない)
- ・FD: 空気シャワーの縦方向発達を大気蛍光で観測
 - カロリーメトリックにエネルギー推定できる
 - 空気シャワー最大発達から質量組成を 推定できる
 - × バックグラウンドのない、晴れた月・雲のない夜 の時のみ観測できる → duty cycle ~ 10%

SDとFDで相補的にUHECR観測

& SD-FD同時観測も可能

→高精度測定 + FDを用いたSDの較正

Telescope Array (TA) 実験

- ・アメリカ、ユタ州の砂漠(高度1,400 m) に位置する北半球最大の 空気シャワー観測施設
- ・507 **SD**s (1.2 km spacing) 観測面積: ~ **700 km**²
- 3 FD stations
 SDアレイに観測視野が重なる
 → SD-FD同時観測が可能
- ・2008年に観測開始

背景

TA×4実験のモチベーション: 到来方向異方性 (TA hotspot)

- TA 実験は5年間の観測で、
 E > 5.7×10¹⁹ eVにおける
 中スケールの異方性の兆候(3.4σ)
 を観測 (TA hotspot)
 - ・UHECR起源解明に向けた 手がかり
- → TA hotspotの存在の確証と その起源を知るため、 さらなる統計が必要 → 観測面積の拡張 (TA×4実験)

背景 TA×4実験のモチベーション:最近の話題(1) TA/Augerエネルギースペクトルの違い

背景

背景 TA×4実験のモチベーション: 最近の話題 (2) E > 10²⁰ eV の宇宙線観測・解析

E>10²⁰ eV の宇宙線到来方向分布に 明かな異方性はない

10

→最高エネルギー宇宙線の 重い質量組成を示唆?

TA collaboration, PRL 133 (2024) 041001

 $E = 244 \pm 29$ (stat.) $^{+51}_{-76}$ (sys.) EeVO宇宙線観測 (Amaterasu particle) TA collaboration, Science 382, 903-907 (2023)

鉄を想定してbacktrackしても 到来方向近傍に有力な起源天体なし

• transient? M. Unger & G. Farrar, ApJL 962, 1 L5 (2024) G. Farrar, arXiv:2405.12004

ultra-heavy UHECR?

B. Zhang et al., arXiv:2405.17409

TA実験は10²⁰ eV以上の 宇宙線イベントを~30イベント観測

背景 TA×4実験

TA×4 実験: 最終的には観測面積をTA実験の4倍にする計画

- ・2019年、最終目標の約半分(257台)のSDを建設、観測開始

 <u>
 この拡張したアレイをここでは TA×4 SD array と呼ぶ <u>
 (拡張部分は TA×1.5 の面積)
 </u>

 </u>
 - ・最高エネルギー観測に特化するため、検出器間隔が TA実験より広い (TA SD array: 1.2 km, TA×4 SD array: 2.08 km)

TAX4SD $ilde{}$ $ilde{}$

The Telescope Array Collaboration, NIM A 1019, 165726 (2021)

- ・基本的なデザインはTA SDと同じ
 - ・2層のプラスチックシンチレーター (厚み: 1.2 cm)
 で空気シャワー粒子を検出
 - ・両層のコインシデンスで波形を記録
 - ・各層で光ファイバーによりPMTにシンチレーション光 を集光
 - ・50 MHz (= 20 ns / time-bin)の FADCでPMT信号をデジタル化

TAX4 SD array トリガーシステム

サブアレイ毎のトリガーシステム

イベント再構成

① <u>SDのヒットタイミング</u> → 到来方向 (天頂角, 方位角)、シャワーコア位置決定 (空気シャワー面の関数形は TA SD arrayと同じ)

イベント再構成

②横方向粒子数分布 → \$800 (シャワー軸から800 mでの粒子数密度)

③ エネルギー推定

天頂角

 $\theta = 49^{\circ}$

 θ [deg]

エネルギースケール

- ・SDのエネルギー推定はハドロン相互作用モデル依存
- ・<u>FDは大気蛍光からカロリーメトリックにエネルギー推定</u> (ハドロン相互作用モデルへの依存が小さい)
- ・<u>SD-FD同時観測イベントを用いて</u>、 E^{QGSJET II-03,p}/f = E_{FD} なるスケールを求める → TA SDの場合、 f = 1.27
- ・TA×4 SDでは異なるハドロン相互作用モデルを使用: QGSJET II-**04** \rightarrow TA×4 SDのエネルギースケール $f_{TA\times4SD}^{QGSJET II-04,p}$ を決める必要あり しかし、高いエネルギー閾値 + 観測期間の短さよりSD-FD同時観測イベントが少なく、

TASDとは異なる方法で求めることが必要

・本研究では、新たにエネルギースケール f^{QGSJET II-04,p}を決定する手法を開発: TA SDの測定したエネルギースペクトルを基にエネルギースケールを決定

エネルギースケール - TA×4 SDの場合-

- ・TA SDエネルギースペクトラム: E_{FD}
- ・MCで計算するトリガー効率: Egen(シミュレーション内の空気シャワー生成時のエネルギー)

 $E_{FD} = E_{TA \times SD}^{QGSJET II - 04, p} / f_{TA \times 4SD}^{QGSJET II - 04, p} = E_{gen} / f_{TA \times 4SD}^{QGSJET II - 04, p}$

$$N_{MC}(f) = \int \frac{dN(E_{FD})}{dE} × A\Omega T × ε(E_{ger}) dE_{gen} \leftarrow TA SDスペクトルを基C$$

計算したイベント数はエネルギースケール f 依存

$$= \int \frac{dN(E_{gen}/f)}{dE} × A\Omega T × ε(E_{gen}) dE_{gen}$$

N_{MC}(f)を実際に観測されたイベント数(N_{Data})と比較 → 両者が一番よく一致するスケールを f^{QGSJET II-04,p} を決定

17

 $f_{TA \times 4 SD}^{QGSJET II-04,p}$ =1.36±0.05

イベント選択条件

エネルギースケール決定,および以降の 解析で用いるイベント選択条件

- ・ $N_{SD}(フィットに使われたSD数) \ge 5$
- ・再構成フィットの χ^2 /ndof ≤ 4
- ・ σ_{dir} (到来方向の不確かさ) $\leq 6^{\circ}$
- · $\sigma_{s800}/S800 \le 0.5$
- ・D_{border}(アレイの端からの距離) ≥ **400** m ・天頂角 θ ≤ **55**°

(使用するパラメーターは TA SD arrayと同じ)

この手法で決定したエネルギースケールは イベント選別条件に依存しない

18

稼働率とApertureの関係

TA×4SD アレイはSD稼働状態が時間変動する+トリガーシステムの変更あり

CRCタウンミーティング - 2025年3月@宇宙線研

19

トリガーシステムの変化

稼働率とApertureの関係

各EpochにおけるAperture

SDの稼働状態&トリガーシステムによってApertureは大きく異なる → MC simulation が アレイ状態の時間変動も含めて観測データを再現する ことを確かめる必要あり

Data/MC比較 稼働率、トリガーシステム毎に比較: Epoch-1

21

Data/MC比較 稼働率、トリガーシステム毎に比較: Epoch-2

Data/MC比較 稼働率、トリガーシステム毎に比較: Epoch-3 + Epoch-4

Data/MC比較 稼働率、トリガーシステム毎に比較: Epoch-3+Epoch-4

最高エネルギー宇宙線エネルギースペクトル

 $F(E_i)$

 $= C_i \times -$

• TA×4 SD は エネルギー分解能がTA SDより悪い (E > 5.7 × 10¹⁹ eV で TA SD: 13%, TA×4 SD: 28%)
 → Input スペクトルの関数形のみを仮定する Forward-folding手法 を導入

 $N_{rec}^{Data}(E_i)$

 $OT \vee c(F_{\rm c}) \vee \Lambda F$

・折れ曲がりなしのpower lawモデル(SPL)と折れ曲がりありのpower lawモデル (1-BPL) を比較

<u>これまでの TA SD array の計算手法</u>

・HiRes実験の測定したエネルギースペクトルを基に bin-to-bin migration の効果(*c_i*)を計算 <u>今回の計算手法 (Forward-folding 手法</u>)

 ・宇宙線エネルギースペクトルの関数形のみ仮定 (パラメーターはフリー)
 → 実データに対してbest-fitのパラメーターを決定

・Best-fit のエネルギースペクトルを基に bin-to-bin migration の効果(*c_i*)を計算

Effective exposure (MCで計算)

TA×4 SD (3yrs)

・ 折れ曲がりのあるモデルの方が 折れ曲がりなしのモデルより preferされる

TA×4 SD arrayの測定した 宇宙線エネルギースペクトルは TA SDの過去の測定と無矛盾

CRCタウンミーティング - 2025年3月@宇宙線研

26

最高エネルギー宇宙線 エネルギースペクトル

TA SD + TA×4 SD combined spectrum

TA×4 SD (3yrs) + TA SD (14 yrs)

TA hotpot の将来観測予想

E > 5.7 × 10¹⁹ eV の最高エネルギー宇宙線の観測レートを 増大することを目的に TA×4実験がスタート

- ・2019年にTA実験拡張地表検出器アレイ (TA×4 SD array) の 最終目標の半分が拡張, 観測開始
- ・統計を増やすことで TAホットスポットやTA / Auger の 宇宙線スペクトルの違いを理解

(1) TA×4 SD解析

KF for TA collab., JPS meeting Sep. 2024

(2) DNNによるTA SD波形情報を用いた宇宙線イベント再構成

A. Prosekin, KF, A. Fedynitch, and H. Sagawa for TA collab., UHECR2024

etc.

H. Dembinski, R. Engel, A. Fedynitch, and KF, UHECR2024