宇宙の進化と素粒子模型

平成29年度宇宙線研究所共同利用研究成果発表会宇宙線研究所理論グループ 伊部昌宏

東大宇宙線研 : 川崎、伊部、他

名古屋大: 久野 京都大学: 瀬波

金沢大:青木東北大:高橋

KEK:郡 東工大:山口

神奈川大:粕谷 佐賀大:高橋智

(合計17名)

国内旅費:10万円

2017 業績一部

1) Oscillons from Pure Natural Inflation.

By Jeong-Pyong Hong, Masahiro Kawasaki, Masahito Yamazaki. [arXiv:1711.10496 [astro-ph.CO]].

2) Primordial Black Holes for the LIGO Events in the Axion-like Curvaton Model.

By Kenta Ando, Keisuke Inomata, Masahiro Kawasaki, Kyohei Mukaida, Tsutomu T. Yanagida.

[arXiv:1711.08956 [astro-ph.CO]].

3) Double Inflation as a single origin of PBHs for all dark matter and LIGO.

By Keisuke Inomata, Masahiro Kawasaki, Kyohei Mukaida, Tsutomu T. Yanagida.

[arXiv:1711.06129 [astro-ph.CO]].

4) Cogenesis of LIGO Primordial Black Holes and Dark Matter.

By Fuminori Hasegawa, Masahiro Kawasaki.

[arXiv:1711.00990 [astro-ph.CO]].

5) <u>Domain wall and isocurvature perturbation problems in a supersymmetric axion model.</u>

By Masahiro Kawasaki, Eisuke Sonomoto.

[arXiv:1710.07269 [hep-ph]].

6) \$\mathcal O(10) M \odot\$ primordial black holes and string axion dark matter.

By Keisuke Inomata, Masahiro Kawasaki, Kyohei Mukaida, Yuichiro Tada, Tsutomu T. Yanagida.

[arXiv:1709.07865 [astro-ph.CO]].

7) Revisiting Big-Bang Nucleosynthesis Constraints on Long-Lived Decaying Particles.

By Masahiro Kawasaki, Kazunori Kohri, Takeo Moroi, Yoshitaro Takaesu. [arXiv:1709.01211 [hep-ph]].

8) Adiabatic suppression of the axion abundance and isocurvature due to coupling to hidden monopoles.

By Masahiro Kawasaki, Fuminobu Takahashi, Masaki Yamada. [arXiv:1708.06047 [hep-ph]].

9) Migdal Effect in Dark Matter Direct Detection Experiments.

By Masahiro Ibe, Wakutaka Nakano, Yutaro Shoji, Kazumine Suzuki. [arXiv:1707.07258 [hep-ph]].

10) Oscillating Affleck-Dine condensate and its cosmological implications.

By Fuminori Hasegawa, Masahiro Kawasaki.

[arXiv:1706.08659 [hep-ph]].

10.1103/PhysRevD.96.063518.

Phys.Rev. D96 (2017) no.6, 063518.

11) <u>Foreground effect on the \$J\$-factor estimation of ultra-faint dwarf spheroidal</u> galaxies.

By Koji Ichikawa, Shun-ichi Horigome, Miho N. Ishigaki, Shigeki Matsumoto, Masahiro Ibe, Hajime Sugai, Kohei Hayashi.

[arXiv:1706.05481 [astro-ph.GA]].

12) Dynamical Clockwork Axions.

By Rupert Coy, Michele Frigerio, Masahiro Ibe.

[arXiv:1706.04529 [hep-ph]]. 10.1007/JHEP10(2017)002.

JHEP 1710 (2017) 002.

13) Gauged Q-ball Decay Rates into Fermions.

By Jeong-Pyong Hong, Masahiro Kawasaki.

[arXiv:1706.01651 [hep-ph]]. 10.1103/PhysRevD.96.103526.

Phys.Rev. D96 (2017) no.10, 103526.

14) A "gauged" \$U(1)\$ Peccei—Quinn symmetry.

By Hajime Fukuda, Masahiro Ibe, Motoo Suzuki, Tsutomu T. Yanagida.

[arXiv:1703.01112 [hep-ph]]. 10.1016/j.physletb.2017.05.071.

Phys.Lett. B771 (2017) 327-331.

15) New type of charged Q -ball dark matter in gauge mediated SUSY breaking models.

By Jeong-Pyong Hong, Masahiro Kawasaki.

[arXiv:1702.00889 [hep-ph]]. 10.1103/PhysRevD.95.123532.

Phys.Rev. D95 (2017) no.12, 123532.

16) Charged Q-Balls in Gauge Mediated SUSY Breaking Models.

By Jeong-Pyon Hong, Masahiro Kawasaki, Masaki Yamada.

<u>10.1142/9789813203952_0027</u>.

17) Dark Matter Candidates in a Visible Heavy QCD Axion Model.

By Hajime Fukuda, Masahiro Ibe, Tsutomu T. Yanagida.

[arXiv:1702.00227 [hep-ph]].

10.1103/PhysRevD.95.095017.

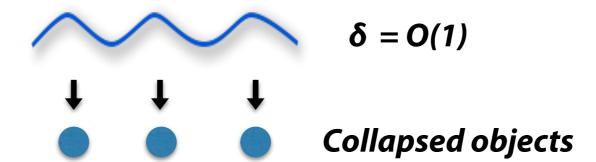
Phys.Rev. D95 (2017) no.9, 095017.

18) Inflationary Primordial Black Holes as All Dark Matter.

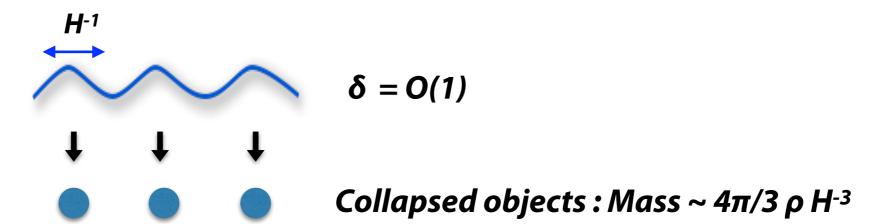
By Keisuke Inomata, Masahiro Kawasaki, Kyohei Mukaida, Yuichiro Tada, Tsutomu T. Yanagida.

[arXiv:1701.02544 [astro-ph.CO]].

10.1103/PhysRevD.96.043504.


Phys.Rev. D96 (2017) no.4, 043504.

O(10)M_⊙ primordial black holes and string axion dark matter

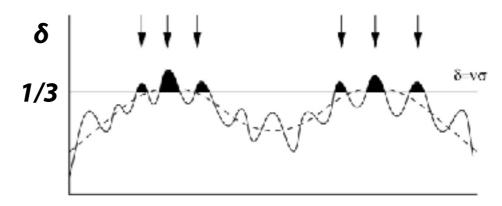

Inomata, Kawasaki, Mukaida, Tada, Yanagida

✓ Primordial Black Hole

The density fluctuations of $\delta = (\rho - \rho_{average})/\rho_{average} = O(1)$ collapse.

If $\delta = O(1)$ for the fluctuation with a spacial size $\sim H^{-1}$

Schwarzschild Radius of: G Mass ~ H-1 > Object Size!


 $\delta = O(1)$ of a spacial size $\sim H^{-1} \rightarrow$ Black Hole

✓ Primordial Black Hole

- ✓ Mass of the PBH formed at $H \sim T^2/M_{PL}$
- Energy fraction at the formation

$$M_{BH} \sim 4\pi/3 \rho H^{-3}$$

$$\sim 0.066 M_{\odot} \left(\frac{\mathrm{GeV}}{T}\right)^{2}$$

https://ned.ipac.caltech.edu/level5/Sept03/Peacock/Peacock6_2.html

Energy fraction at the formation

$$\beta_*(M_*) = \int_{1/3}^1 \frac{d\delta}{\sqrt{2\pi}\bar{\delta}(M_*)} \exp\left(-\frac{\delta^2}{2\bar{\delta}^2(M_*)}\right) \simeq \bar{\delta}(M_*) \exp\left(-\frac{1}{18\bar{\delta}^2(M_*)}\right),$$

Abundance

$$\Omega_{BH}h^2 \simeq 5.6 \times 10^7 \beta_*$$
 $\bar{\delta}^2 \sim 0.01$

✓ LIGO-Virgo Events By PBH ?

 $O(10)M_{\odot}$ Black hole merger ~ $12 - 213 / Gpc^3 / year$

 \rightarrow $O(10)M_{\odot}$ PBH with $\Omega_{PBH}/\Omega_{DM} \sim 10^{-3}$ - 10^{-2}

1

Primordial Black Hole

At large scales, the fluctuations are

 $\delta(CMB, galaxy cluster) \sim 4(\Delta T/T)_{CMB} \sim 10^{-4}$

We prepare large fluctuation at very small structure scale!

 $\delta^2(PBH) \sim 0.01$ at $H^{-1} << CMB$, galaxy cluster sizes

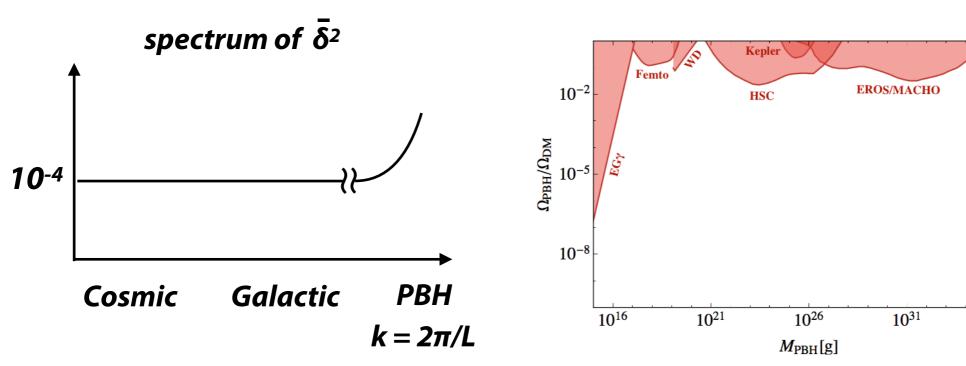
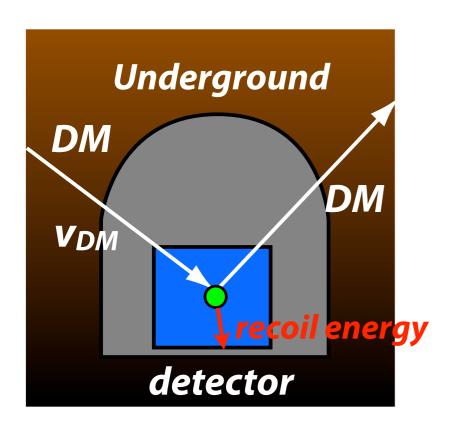


FIG. 3. The PBH mass spectrum for parameters given in Eq. (41). Red shaded regions are excluded by extragalactic gamma rays from Hawking radiation (EG γ) [75], femtolensing of known gamma ray bursts (Femto) [76], white dwarfs existing in our local galaxy (WD) [77], microlensing search with Subaru Hyper Suprime-Cam (HSC) [78], Kepler micro/millilensing (Kepler) [79], EROS/MACHO microlensing (EROS/MACHO) [80], dynamical heating of ultra faint dwarf galaxies (UFD) [51], and accretion constraints from CMB (CMB) [50]. See also [23] for a recent summary of observational constraints on PBHs.

Inomata, Kawasaki, Mukaida, Tada, Yanagida

 10^{36}

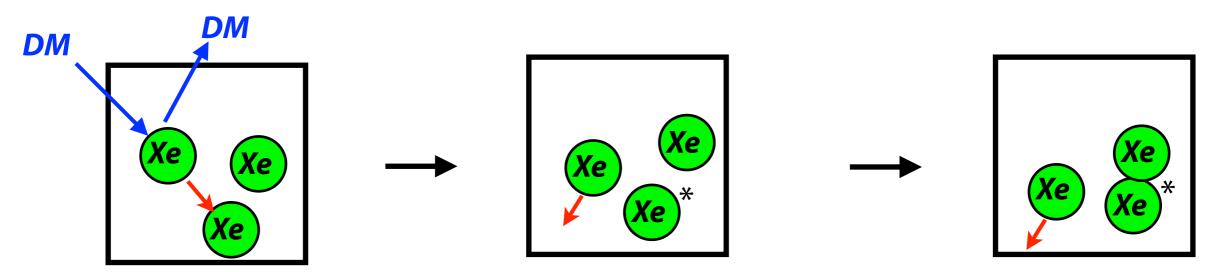

Migdal Effect in Dark Matter Direct Detection Experiments

Ibe, Nakano, Shoji, Suzuki

✓ Dark Matter Direct Detection Experiment

- ✓ The Earth is immersed in a dark matter halo ($\rho_{DM} \sim 0.4 \text{ GeV/cm}^3$)
- ✓ Dark Matter in such a halo has a velocity distribution (<v_{DM}>~220km/s)
- ✓ The Sun moves at a speed of 232 km/s around the Galaxy.

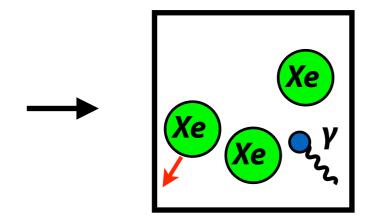
 (The Earth moves around the Sun with a speed of 30 km/s)



✓ Dark matter scatters off a nucleus of the detector material and deposits recoil energy (O(10)keV)

✓ The recoil energy is detected through ionization, scintillation, and the production of heat in the detectors.

✓ How is the Nucleus Scattering detected?


e.g. Liquid Xenon (LXe) Detector

Recoiled **Xe** lose its energy via (in)elastic scattering with other **Xe**.

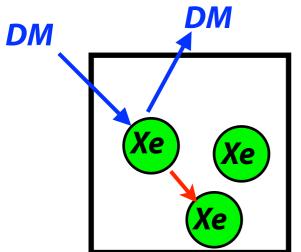
Inelastic scattering leads to excite/ionize **Xe's.**

The **excited/ionized Xe**'s form excited molecular (excimer).

Excimer eventually decays by emitting a photon with a characteristic wave length (~ 175nm)

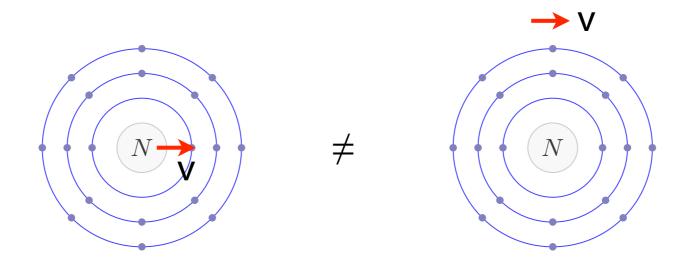
= scintillation photon!

(Typical Time Scale $\sim O(1)$ ns - O(10)ns)


scintillation photon \propto Recoil Energy

Nuclear recoil is detected by looking for

Scintillation photons &/ emitted electrons @ ionizations


✓ What is missing in this analysis?

e.g. Liquid Xenon (LXe) Detector

In conventional analysis, the **recoiled nucleus** is treated as a **recoiled neutral atom**.

✓ In reality, it takes some time for the electrons to catch up...

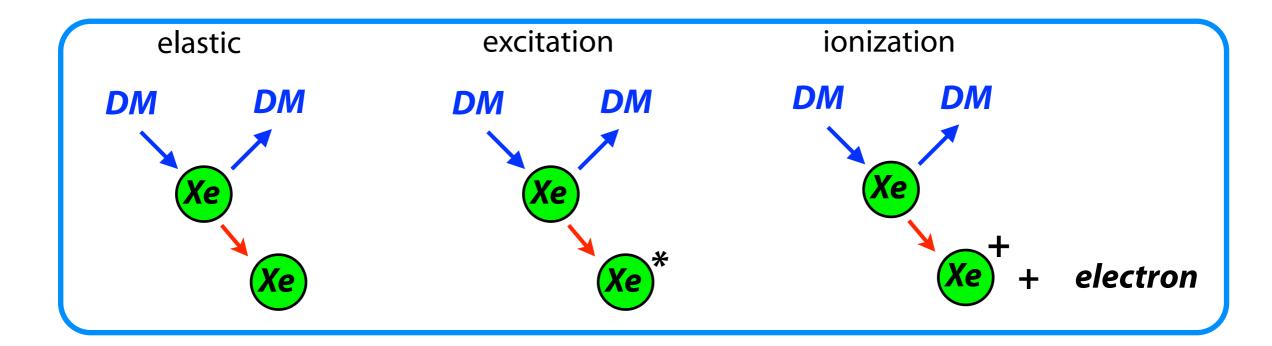
✓ The process to catch up causes electron excitations/ionizations!

→ Migdal Effect! [1939, Migdal]

['05 Vergados&Ejiri,'07 Bernabei et al. Application to DM detection]

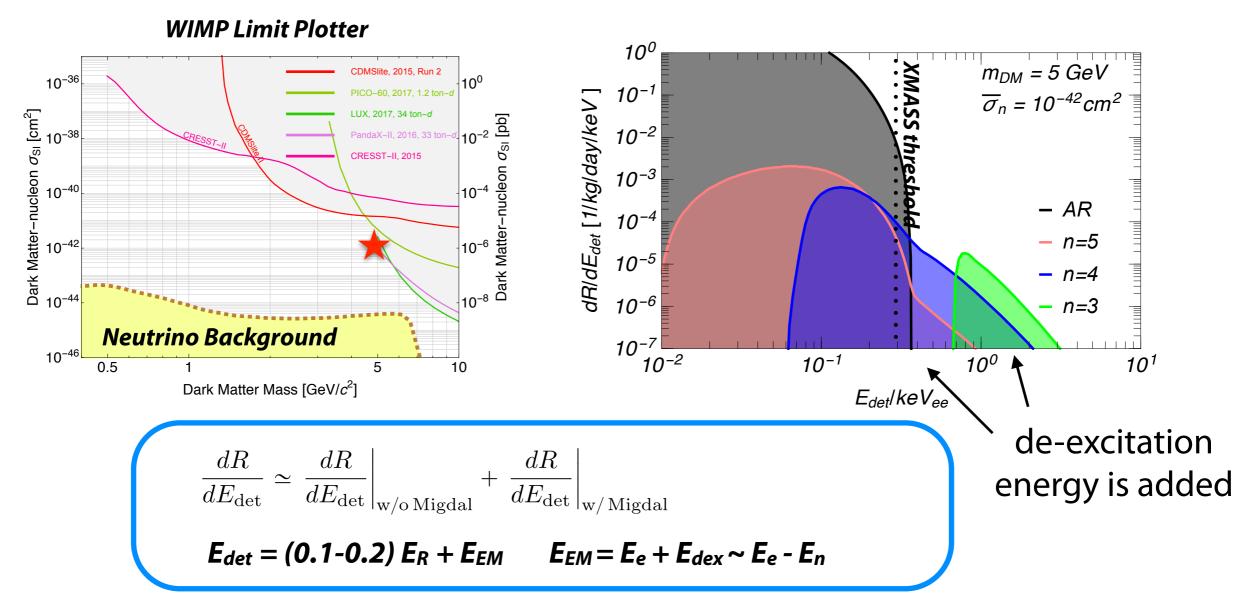
"Atomic" Recoil Cross Section

After phase space integration :


$$\frac{d\sigma}{d\cos\theta_{CM}} \simeq \sum_{E_{ec}^F} \frac{1}{32\pi} \frac{|\mathbf{p}_F|}{(p_A^{I_0} + p_{DM}^{I_0})^2 |\mathbf{p}_I|} |\mathcal{M}|^2 |Z_{FI}(q_e)|^2$$

$$Z_{FI}(\mathbf{q}_e) = \int \prod_i d^3 \mathbf{x}_i \, \Phi_{E_{ec}^F}^*(\{\mathbf{x}\}) e^{-i\sum_i \mathbf{q}_e \cdot \mathbf{x}_i} \Phi_{E_{ec}^I}(\{\mathbf{x}\})$$

$$\mathbf{p}_{DM}^I = -\mathbf{p}_A^I = \mathbf{p}_I \simeq \mu_N \mathbf{v}_{DM}^I \quad \textbf{(p_A^{I_0} = m_A, p_{DM}^{I_0} = m_{DM})}$$


The process is not elastic for $E_{ec}^F \neq E_{ec}^I$!

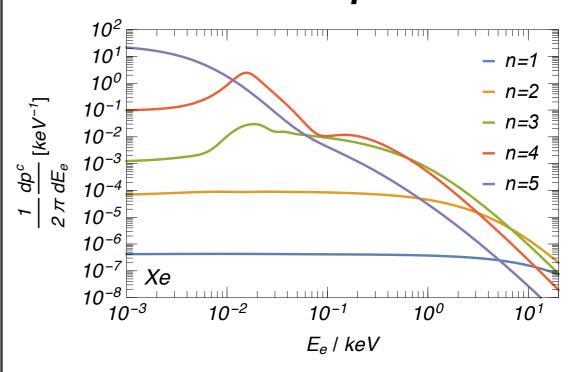
$$|\mathbf{p}_F|^2 \simeq |\mathbf{p}_I|^2 - 2\mu_N (E_{ec}^F - E_{ec}^I)$$
 $v_{DM}^{(th)} = \sqrt{\frac{2(E_{ec}^F - E_{ec}^I)}{\mu_N}}$

✓ Implication on Dark Matter Direct Detection Experiments

✓ Migdal Effect single-phase Liquid Xe detectors

A few events with $E_{det} = O(1)$ keV are expected for 10^5 kg days!

The atom recoil energy is lower than threshold $E_R < M_{DM}^2 / M_A \times v_{DM}^2 < O(1) keV$

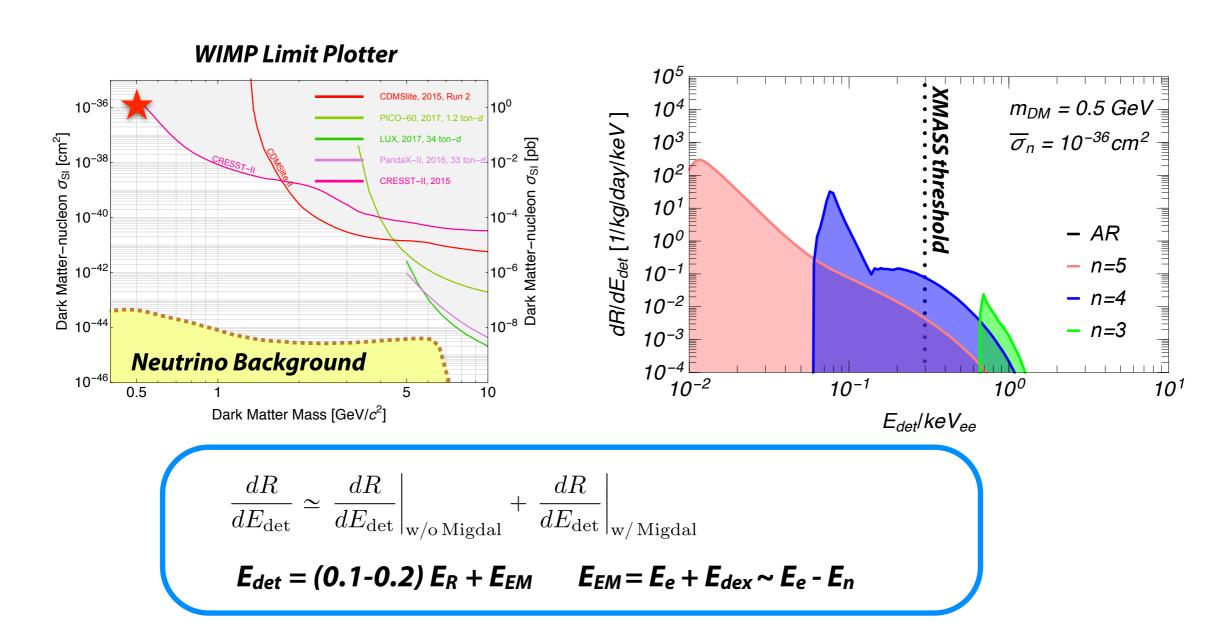

Migdal Effect might opens up new detection channel of the DM-NUCLEAR scattering!

Backup

✓ Numerical Transition Rate (by using Flexible Atomic Code)

$Xe (q_e = m_e \times 10^{-3})$						
(n,ℓ)	$\mathcal{P}_{ ightarrow 4f}$	$\mathcal{P}_{ ightarrow 5d}$	$\mathcal{P}_{ ightarrow 6s}$	$\mathcal{P}_{ ightarrow 6p}$	$E_{n\ell}$ [eV]	$\frac{1}{2\pi} \int dE_e \frac{dp^c}{dE_e}$
1s	_	_	_	$7.3 \times 10^{-}$	$10 \ 3.5 \times 10^4$	4.6×10^{-6}
$2\mathrm{s}$	_	_	_	$1.8 \times 10^{-}$	5.4×10^3	2.9×10^{-5}
2p	_	3.0×10^{-8}	6.5×10^{-9}	-	4.9×10^{3}	1.3×10^{-4}
3s	_	_	_	$2.7 \times 10^{-}$	1.1×10^3	8.7×10^{-5}
3p	_	3.4×10^{-7}	4.0×10^{-7}		9.3×10^{2}	5.2×10^{-4}
3d	2.3×10^{-9}	_	_	$4.3 \times 10^{-}$	$-7 \mid 6.6 \times 10^2 \mid$	3.5×10^{-3}
4s	_	_	_	$3.1 \times 10^{-}$	$ 2.0 \times 10^2 $	3.4×10^{-4}
4p	_	4.1×10^{-8}	3.0×10^{-5}	5 -	1.4×10^{2}	1.4×10^{-3}
4d	7.0×10^{-7}			$1.5 \times 10^{-}$	$-4 \mid 6.1 \times 10$	3.4×10^{-2}
$5\mathrm{s}$		_	_	$1.2 \times 10^{-}$	-4 2.1 × 10	4.1×10^{-4}
5p		3.6×10^{-2}	2.1×10^{-2}	2	9.8	1.0×10^{-1}
(n,ℓ)		(n,ℓ)	4 <i>f</i> 50	d $6s$	6 <i>p</i>	
nitial state		$E_{n\ell}[eV]$	0.85 1.	6 3.3	2.2	

ionization spectrum

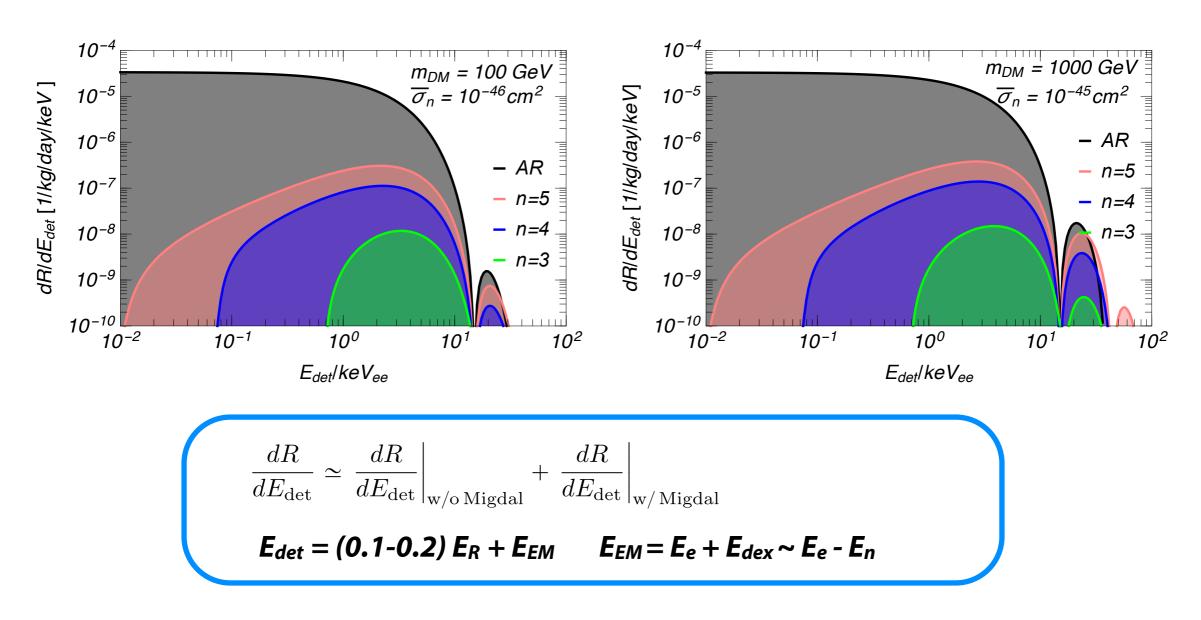


(transition is possible only for $|\Delta \ell| = 1$)

- ✓ The ionization rate from n = 3 state can be $O(10^{-3})$.
 - → leading to *O(1)keV* electronic energy deposition!
- ✓ The excitation rates are smaller.

✓ Implication on Dark Matter Direct Detection Experiments

✓ Migdal Effect single-phase Liquid Xe detectors



A few hundred events with $E_{det} = O(1)$ keV are expected for 10^5 kg days!

The atom recoil energy is much lower than threshold $E_R < M_{DM}^2 / M_A \times v_{DM}^2 = O(1)eV$

✓ Implication on Dark Matter Direct Detection Experiments

✓ Migdal Effect single-phase Liquid Xe detectors

For heavier dark matter, the atom recoil energy is much lower than threshold $E_R < M_{A^2} \times v_{DM^2} = O(10-100) \text{keV}$

The Migdal effect is submerged below the conventional nuclear recoil spectrum.