Hyper-Kamiokande計画 現状と展望

田中秀和

ICRR, University of Tokyo

for Hyper-Kamiokande proto-collaboration

ニュートリノ研究会,2018年2月24日

Hyper-K proto-collaboration

- ~300 collaborators
- 75 institutions from
 15 countries
- ~70% of collaborators from oversea countries

Hyper-Kamiokande

260kt

74m

60m

Hyper-Kamiokande

Next generation water Cherenkov detector

- Construct two detectors with staging
- Realize the first detector as soon as possible
 - Option of second detector in Korea
- The first detector (I tank)
 - Filled with 260kton of ultra-pure water
 - 60m tall x 74 diameter water tank
 - Fiducial mass: 190kton
 - ~I0 x Super-K
 - Photo-coverage: 40% (Inner Detector)
 - 40,000 of **new 50cm PMTs**
 - x2 higher photon sensitivity than SK PMT
- All physics sensitivities shown in this talk assumes
 I tank (otherwise will be mentioned)

• Overburden ~650m (~1755 m.w.e.)

Hyper-K: multi-purpose detector

- **Comprehensive study of v oscillation**
 - CPV: 76% of δ space w/ 3 σ , <22° precision
 - MH determination for all δ with J-PARC/Atm ν
 - θ_{23} octant determination at $|\theta_{23}-45^{\circ}|>2^{\circ}$
 - <1% precision of Δm^{2}_{32}
 - Test standard v oscillation scenario w/ acc/atm v

Proton decay 3\sigma discovery potential

- 1×10^{35} years for $p \rightarrow e^+ \pi^0$
- 3×10^{34} years for $p \rightarrow V K^+$

• Astrophysical neutrino

- Solar V: test standard matter effect (MSW) model
- Supernova V, supernova relic-V
- Dark matter neutrinos from Sun, Galaxy, Earth

Accelerator Atmospheric

Hyper-K

8

J-PARC to Hyper-K

- Relatively short baseline (295km, same as T2K)
 - Less matter effect: good for CP measurement
 - Complementary to other experiments with longer baseline (>1000km)
- 2.5 deg. Off-Axis beam (same as T2K)
- Low energy (~0.6GeV) and narrow band beam
 - Peak around oscillation maximum
 - Good match for Water Cherenkov detector

Detector performance

- Large mass (~10 x Super-K FV)
 - Statistics is always critical
- Excellent particle ID (e/μ)
 - Mis-identification <1%
- Energy resolution $e/\mu \sim 3\%$
- Quasi-elastic is dominant (sub-GeV)
 → Clean one-ring event

V_e CC candidates Reconstructed v energy distributions (after applied selection cuts) $sin^{2}(2\theta_{13})=0.1$, δ =0, normal MH

1.3MW x 3 years

for $\delta_{\rm CP} = 0$	Signal $\nu_{\mu} \rightarrow \nu_{e} CC$	Wrong sign appearance	$\nu_{\mu}/\overline{\nu}_{\mu}$ CC	Beam $\nu_{e}/\overline{\nu}_{e}$ contamination	NC
u beam	1,643	15	7	259	134
$\overline{ u}$ beam	1,183	206	4	317	196

- S/N~10 at peak (>99% $v_{\mu}CC/NC$ bkg rejection)
 - ex. NC π 0 bkg rejection efficiency: >99.5%

Effect of $\delta_{CP} \neq 0$

Neutrino mode: appearance

of ve candidates

Difference from $\delta=0$

Antineutrino mode: appearance

- Sensitive to all δ values
- also sensitive to any non-standard CPV, if any

Expected sensitivity for CPV

• $\sin\delta_{CP}=0$ exclusion:

- ~8 σ significance if δ_{CP} =±90°
- ~6 σ significance if δ_{CP} =±45°
- Observe CPV for 76%
 (58%) of δ_{CP} space w/ 3σ
 (5σ) significance
- δ_{CP} resolution:

Mass Hierarchy determination in Hyper-K

- Earth matter effect in upward-going multi-GeV $\nu_{\rm e}$ sensitive to mass hierarchy
 - Earth matter effect 'resonance' appears in V_e app. for NH, in $\overline{V_e}$ app. in IH
- Combination of atmospheric V and beam V to determine mass hierarchy

4

• Mass hierarchy and θ_{23} octant can be determined $(\geq 3\sigma)$ within several years for the nearly entire parameter space

Systematic uncertainties

- Syst. errors based on SK/T2K experience and prospect
 - Error matrices of T2K adopted in HK sensitivity
 - Near detector: constrain cross section error w/ water target
 - Far detector: systematic error reduced by large stat. atm-V

		Flux & ND-constrained	ND-independent	Far detector	Total
		cross section	cross section		
ν mode	Appearance	3.0%	0.5%	0.7%	3.2%
	Disappearance	3.3%	0.9%	1.0%	3.6%
$\overline{\nu}$ mode	Appearance	3.2%	1.5%	1.5%	3.9%
	Disappearance	3.3%	0.9%	1.1%	3.6%

Assumed syst. uncertainties for sensitivity studies

HK sensitivity studies assume uncertainties at 3~4% level

(cf. Uncertainty at the 6~7% level in T2K)

Dominant errors: electron (anti)neutrino cross section, near-to-far extrapolation of event rates, far detector modeling

Near Detector Upgrade

- Near and intermediate detectors for HK are being developed to control flux and cross-section systematic errors
- Will continue using the INGRID on-axis and magnetized ND288 off-axis detectors
- Work within T2K to upgrade ND280 detector
 - See Satashita-san's talk for details

Korean option for 2nd tank

Project status in Japan

- 'Hyper-K Design Report' released
 - KEK preprint 2016-21, ICRR-Report-701-2016-1
- Strong commitment from host institutes: ICRR, U.Tokyo and KEK (MoU for Hyper-K)
- Strong support from Japanese communities
 - Cosmic-ray (CRC) and high-energy (JAHEP)
- Science Council of Japan selected Hyper-K as one of the top priority large-scale projects in 'Master Plan 2017'
- Hyper-K listed in 'Roadmap 2017' of MEXT (funding agency)
- Aim to begin operation in JFY 2026

Hyper-K Design Report

- Hyper-K baseline design and physics sensitivities in KEK preprint and ICRR report
- Being updated by adopting recent progress of detector design and physics sensitivity studies

Summary

• Wide Physics topics, many discovery potentials

- v CPV: 76% of δ space w/ 3 σ , δ resolution <20°
- Proton decay discovery sensitivity reaches 10³⁵ years
- SN burst, SN relic v, indirect WIMP search, etc
- Physics sensitivity enhanced with new photosensor

• Project is boosted toward an early realization

- International proto-collaboration formed
- Hyper-K Design Report released
- Strong support from Japanese communities and host institutes
- Selected in 'Master Plan' of Science Council of Japan
- Listed in 'Roadmap 2017' of MEXT
- Aim to begin the operation in JFY 2026
- Open for new collaborators