飛翔体観測(CALET)による 高エネルギー宇宙線加速天体の研究 ~CALET3年間の軌道上観測成果~ 研究代表者:鳥居祥二 早稲田大学 理工研/物理

CALET

平成30年度宇宙線研究所共同利用研究成果発表会 2018.12.21

NASA

共同利用研究概要(2018)

■ 共同研究内容

・ CALET観測最適化のためのシミュレーション計算及びデータ解析

■ 発表概要

- ・ CALET観測目的 装置
- 観測現状
- ・観測データ解析
- ・まとめと展望

■予算旅費 200千円 支出(予定)内容:研究打ち合わせ、小研究会

■共同利用 計算機(シミュレーション計算)

参加研究者及び研究補助				
早稲田大学	笠原克昌、寺澤敏夫、小澤俊介、浅	岡陽一、Motz H	Martin、高橋宏侍、	
藤田崚、宮崎美有、吉川康太、片桐靖博、右田陽太郎				
宇宙線研究所	浅野勝晃、石崎渉	神奈川大学	田村忠久,清水雄輝	
横浜国立大学	片寄祐作	芝浦工業大学	吉田健二	
立命館大学	森正樹	弘前大学	市村雅一	
信州大学	宗像一起	茨城大学	柳田昭平	
CRESST/NASA/GSFC 赤池陽水				

CALET collaboration team

O. Adriani²⁵, Y. Akaike², K. Asano⁷, Y. Asaoka^{9,31}, M.G. Bagliesi²⁹, G. Bigongiari²⁹, W.R. Binns³², S. Bonechi²⁹, M. Bongi²⁵, P. Brogi²⁹, J.H. Buckley³², N. Cannady¹², G. Castellini²⁵, C. Checchia²⁶, M.L. Cherry¹²,
G. Collazuol²⁶, V. Di Felice²⁸, K. Ebisawa⁸, H. Fuke⁸, G.A. de Nalfo¹⁴, T.G. Guzik¹², T. Hams³, M. Hareyama²³, N. Hasebe³¹, K. Hibino¹⁰, M. Ichimura⁴, K. Ioka³⁴, W.Ishizaki⁷, M.H. Israel³², A. Javaid¹², K. Kasahara³¹, J. Kataoka³¹, R. Kataoka¹⁶, Y. Katayose³³, C. Kato²², Y.Kawakubo¹, N. Kawanaka³⁰, H. Kitamura¹⁵, H.S. Krawczynski³², J.F. Krizmanic², S. Kuramata⁴, T. Lomtadze²⁷, P. Maestro²⁹, P.S. Marrocchesi²⁹, A.M. Messineo²⁷, J.W. Mitchell¹⁴, S. Miyake⁵, K. Mizutani²⁰, A.A. Moiseev³, K. Mori^{9,31}, M. Mori¹⁹, N. Mori²⁵, H.M. Motz³¹, K. Munakata²², H. Murakami³¹, Y.E. Nakagawa⁸, S. Nakahira⁹, J. Nishimura⁸, S. Okuno¹⁰, J.F. Ormes²⁴, S. Ozawa³¹, L. Pacini²⁵, F. Palma²⁸, P. Papini²⁵, A.V. Penacchioni²⁹, B.F. Rauch³², S.B. Ricciarini²⁵, K. Sakai³, T. Sakamoto¹, M. Sasaki³, Y. Shimizu¹⁰, A. Shiomi¹⁷, R. Sparvoli²⁸, P. Spillantini²⁵, F. Stolzi²⁹, I. Takahashi¹¹, M. Takayanagi⁸, M. Takita⁷, T. Tamura¹⁰, N. Tateyama¹⁰, T. Terasawa⁷, H. Tomida⁸, S. Torii^{9,31}, Y. Tunesada¹⁸, Y. Uchihori¹⁵, S. Ueno⁸, E. Vannuccini²⁵, J.P. Wefel¹², K. Yamaoka¹³, S. Yanagita⁶, A. Yoshida¹, K. Yoshida²¹, and T. Yuda⁷

CALET Payload

Launched on Aug. 19th, 2015 by the Japanese H2-B rocket

Emplaced on JEM-EF port #9 on Aug. 25th, 2015 (JEM-EF: Japanese Experiment Module-Exposed Facility)

- Mass: 612.8 kg
- JEM Standard Payload Size: 1850mm(L) × 800mm(W) × 1000mm(H)
- Power Consumption: 507 W (max)
- Telemetry:

Medium 600 kbps (6.5GB/day) / Low 50 kbps

Y.Asaoka, S.Ozawa, S.Torii et al. (CALET Collaboration), Astropart. Phys. 100 (2018) 29.

Observation by High Energy Trigger for 1032 days : Oct.13, 2015 – July 31, 2018
 The exposure, SΩT, has reached to ~ 89.6 m² sr day for electron observations by continuous and stable operations.

Total number of triggered events is ~ 670 million with a live time fraction of 84.0 %.

Examples of Observed Events

Proton, $\Delta E=2.89 \text{ TeV}$

Event Display: Electron Candidate (>100 GeV)

Electron, E=3.05 TeV

TASC Energy Deposit Distribution of All Triggered-Events by Observations for 1023 days

CALET is an instrument optimized

for all-electron spectrum measurements.

⇒ CALET is best suited for observation of possible fine structures in the all-electron spectrum up to the trans-TeV region.

Extended Analysis of e/p Separation to Full Acceptance

Analyzed Flight Data:

- 780 days (October 13, 2015 to November 30, 2017)
- Full CALET acceptance at the high energy region (Acceptance A+B+C+D; 1040cm²sr).
 In the low energy region fully contained events are used (A+B; 550cm²sr)

All-Electron Spectrum Measured with CALET from 11 GeV to 4.8TeV

CALET All-Electron Spectrum in sub-TeV to TeV region

2018/12/21

ICRR

Comparison with DAMPE's result

What happens if we shifted our energy binning...

Five years or more observations \Rightarrow 3 times more statistics, reduction of systematic errors

Preliminary Flux of Primary Nuclei Components

CALET Gamma-ray Sky (>1GeV)

Electromagnetic Emission from Gravitational Wave Events ?

CALET/CAL is watching for ~1/6 of the whole sky!

No event survived. Backgrounds are negligible.

- For GW151226 CALET-CAL observation constrains 15% of LIGO localization map by 90% upper limit flux of 9.3x10-8erg cm-2sec-1(1-10GeV)
- For GW170104, GW170608, GW170814 no constrain on any portion of LIGO probability

Publication List in FY 2017-2018 (refereed)

1) "Characteristics and Performance of the CALorimetric Electron Telescope (CALET) Calorimeter for Gamma-Ray Observations", *N.Cannady, *Y.Asaoka, et al. (CALET Collaboration), The Astrophysical Journal Supplement Series 238:5 (16pp), 2018.

2) "Search for GeV Gamma- Ray Counterparts of Gravitational Wave Events by CALET", O.Adriani, *Y.Asaoka, *M.Mori, et al. (CALET Collaboration), The Astrophysical Journal, 863:160 (9pp), 2018.

3) "Extended Measurements of Cosmic-ray Electron and Positron Spectrum from 11 GeV to 4.8 TeV with the Calorimetric Electron Telescope on the International Space Station",

O. Adriani, *Y. Asaoka, *S. Torii, et al. (CALET Collaboration), Phys. Rev. Lett. 120, 261102 (7pp) (2018).

4) "Detection of the thermal component in GRB 160107A",

*Kawakubo Yuta, Sakamoto Takanori, et al. (CALET collaboration), Publication of the Astronomical Society of Japan, 70(1) p.61

5) "Energy Spectrum of Cosmic-Ray Electron and Positron from 10 GeV to 3 TeV Observed with the Calorimetric Electron Telescope on the International Space Station",

O. Adriani, *Y. Asaoka, *S. Torii, et al. (CALET Collaboration), Phys. Rev. Lett. 119, 181101(6pp) (2017).

6) "On-orbit Operations and Offline Data Processing of CALET onboard the ISS",

*Y. Asaoka, S.Ozawa, S. Torii, et al. (CALET Collaboration), Astroparticle Physics, 100 (2018) 29-37

7) "Energy calibration of CALET onboard the International Space Station",
*Y. Asaoka, et al. (CALET Collaboration), Astroparticle Physics, 91 (2017) 1-10.

国際宇宙ステーションの「きぼう」で行われたCALET の実験成果が2018 ISS Award for Compelling Resultsを受賞

受賞案件概要		
受賞案 件	Compelling Results in Physical Sciences and Materials Development "Direct Measurement of High Energy Cosmic- Ray Electron and Positron to the TeV region"	E SSR&D CONFERENCE 2018
受賞 者	鳥居祥二氏(早稲田大学)、CALET開発チー ム(JAXA、NASA、ASI) 、CALET国際サ イエンスチーム (Waseda University/Louisiana State University/ University of Siena and INFN)	Direct Measurement of High Energy Cosmic-Ray Electron and Positron to the TeV Region Shoji Torii and the CALET Team Waseda University/Louisiana State University/University
受賞理由		of Siena and INFN
 国際協力によるISS利用成果創出 <解説> 日米のみならず、イタリアを含む国際協力で、ISSから 他では得られない高精度なデータを取得し、宇宙物理 学の発展に大きく貢献したことが評価され受賞しました 		July 2018
http://is	s.jaxa.jp/kiboexp/news/180727 iss awards.html	

Summary and Future Prospects

- CALET was successfully launched on Aug. 19, 2015, and the detector is being very stable for observation since Oct. 13, 2015.
- □ As of July 31, 2018, total observation time is 1032 days with live time fraction to total time close to 84%. Nearly 670 million events are collected with high energy (>10 GeV) trigger.
- Accurate calibrations have been performed with non--interacting p & He events + linearity in the energy measurements established up to 10⁶ MIP.
- All electron spectrum has been extended in statistics and in the energy range from 11 GeV to 4.8TeV.
- Preliminary analysis of nuclei and gamma-rays have successfully been carried out and spectra are obtained in the energy range:
- proton: 50 GeV ~ 100 TeV, helium: 10 GeV/n ~ 20 TeV/n, C-Fe: 50 (200) GeV ~ 100 TeV.
- B/C ratio: 20 GeV/n ~ 1 TeV/n
- □ Preliminary analysis of UH cosmic rays up to Z=40 was achieved.
- □ CALET's CGBM detected nearly 60 GRBs (~20 % short GRB among them) per year in the energy range of 7keV-20 MeV. Follow-up observations of the GW events were carried out .
- The so far excellent performance of CALET and the outstanding quality of the data suggest that a 5-year observation period is likely to provide a wealth of new interesting results.