次世代の超高エネルギー宇宙線観測のための 大気蛍光望遠鏡の開発研究

多米田裕一郎 大阪電気通信大学 工学部 基礎理工学科

CRAFFT

Cosmic Ray Air Fluorescence Fresnel lens Telescope

整理番号	研究代表者		課題名	配分額
E19	多米田裕一郎 大阪電通大工	新任	次世代の超高エネルギー宇宙線観測のための フレネルレンズ型大気蛍光望遠鏡の開発研究	100万円
E21	冨田孝幸 信州大工		新型大気蛍光望遠鏡における電力自給システム・ 検出器保護システムの開発	25万円

物品購入、旅費、論文投稿費(予定)などに使用しました。

共同研究者

大阪電気通信大学工学部: 多米田裕一郎(代表者)、貝野裕紀、小越友理菜、

笠見沙織、守本誠

信州大学工学部: 冨田孝幸、山本真周、岩倉広和、中村雄也

東京大学地震研究所: 池田大輔

神奈川大学工学部: 山崎勝也

ご支援、ご協力ありがとうございました。

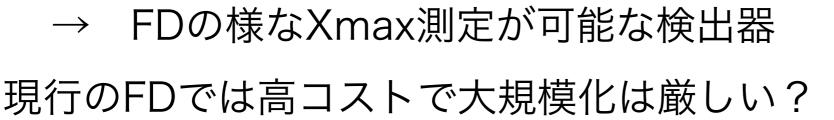
CRAFFT

研究課題

- ·E19「次世代の超高エネルギー宇宙線観測のためのフレネルレンズ型大気蛍光望遠鏡の開発研究」
- ·E21「新型大気蛍光望遠鏡における電力自給システム・検出器保護システムの開発」

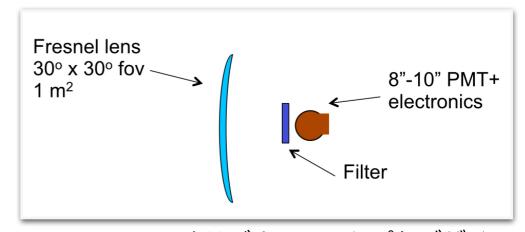
学会発表、国際会議発表など

- ・ "Detection of ultra-high energy cosmic ray air showers by Cosmic Ray Air Fluorescence Fresnel-lens Telescope for next generation", Y. Tameda, M. Yamamoto, T. Tomida, D. Ikeda, K. Yamazaki, H. Iwakura, Y. Nakamura, Y. Saito, UHECR2018 (2018), パリ (招待講演)
- · 「CRAFFT実験5:完全自動観測システム」、多米田裕一郎、貝野裕紀、小越友理菜、冨田孝幸、山本真周、岩倉広和、齊藤保典、池田大輔、山崎勝也、日本物理学会2018年秋季大会 (2018)


発表論文、プロシーディングなど

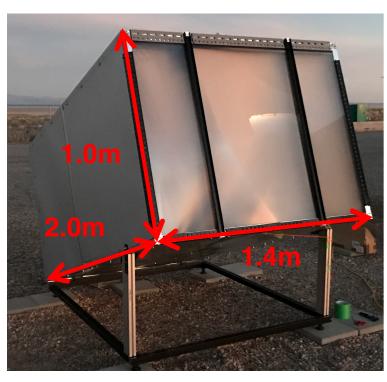
・論文投稿中

次世代大気蛍光望遠鏡概要



- ・目的:次世代の超高エネルギー宇宙線観測のための大気蛍光望 遠鏡の開発
- ・超高エネルギー宇宙線観測の今後…
 - (1) 高統計での到来方向解析
 - → 検出面積の大規模化
 - (2) 質量組成の解明

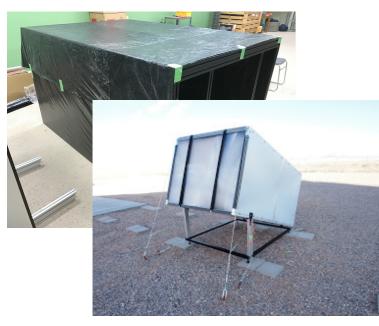
・低コストで実現可能なFDの開発


単ピクセル望遠鏡(反射鏡、フレネルレンズ)

オリジナルコンセプトデザイン P. Privitera, et.al.UHECR(2012)

CRAFFT概要

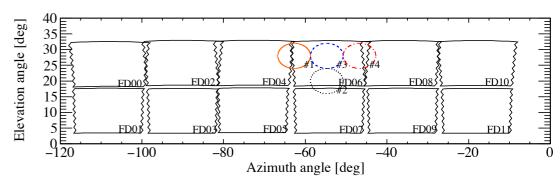
検出器構成構成

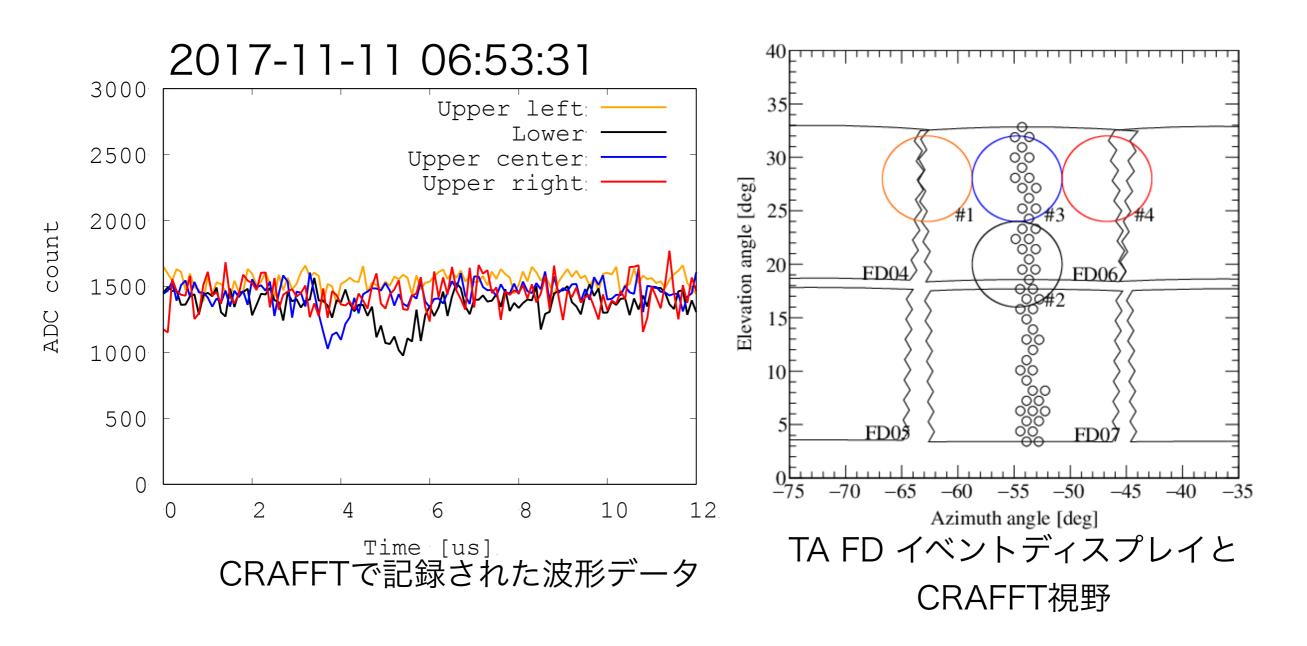

- フレネルレンズ(1.4m², f=1.2m)
- 紫外線透過フィルター(UL-330)
- 光電子増倍管(R5912, 8インチ)
- 高圧電源
- FADC (CosmoZ, 12bit, 80MHz)
- アルミフレーム

- シンプルな構造
- 建屋なども要らず、設置が容易
- 自律稼働観測システムでメンテナンスフリー
 - → Xmax測定が可能なFDによる巨大地表アレイの実現

CRAFFTの現状


2017年に米国TAサイトに設置。 2018年も試験観測を行なっている。

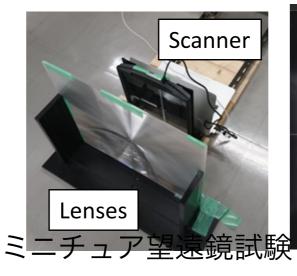


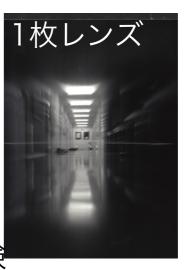


TA視野中のCRAFFTの視野

CRAFFTで観測された空気シャワーイベント

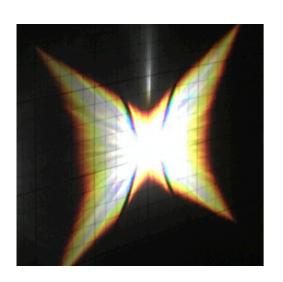
エネルギー: 10^{17.7} eV, 距離: 3.6 km (by TA FD)

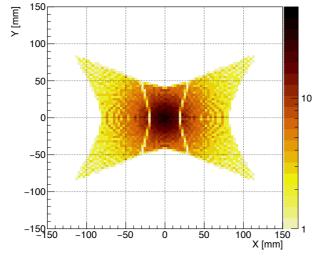

光学系試験と構成の最適化



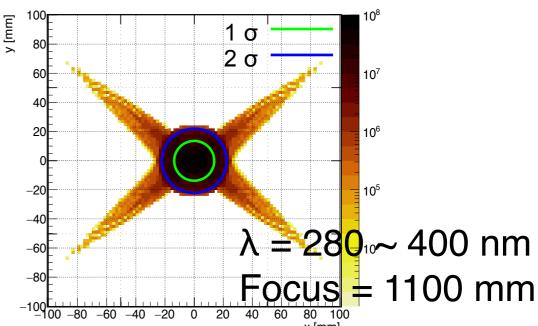
光学系の最適化

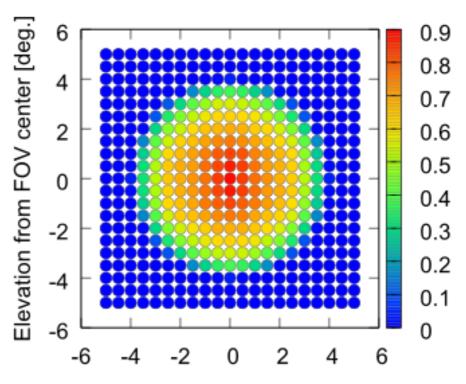
- 2枚レンズによる広視野の獲得
- 受光面拡大による広視野の獲得
- マルチピクセルによるS/N比の向上
- 大口径化
- 2枚レンズ試験@明野観測所
 - 焦点距離を半分に縮めることが可能 ➡ 望遠鏡の小型化+視野拡大
- ミニチュア望遠鏡による光学系の試験
 - 2枚レンズによる視野の詳細測定


シミュレーションによる光学系の評価



検出器の構造を考慮したレイトレース シミュレーション by ROBAST


(ROBSAT: A. Okumura 2016)



(左)測定したスポット

(右)シミュレーションにより再現されたスポット

95 % スポットサイズ: 44 mm

Azimath from FOV center [deg.]

光電面での集光効率の角度依存

自動観測システムの構築

自動観測システム試験

2018年10, 11月 @TA FDサイト

- 太陽光発電システム
- ●データ取得の自動化
- 回路系のアップデート

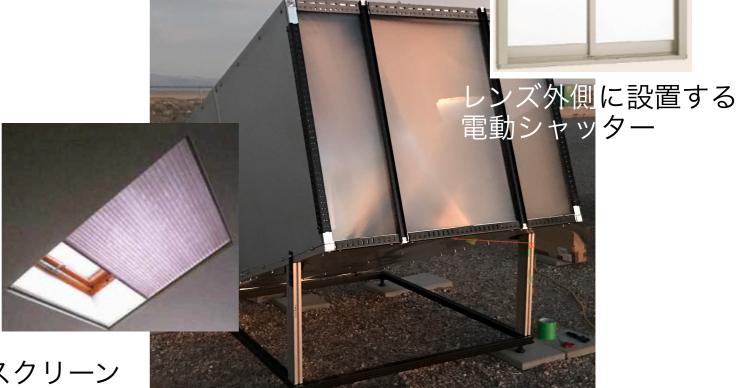
設置した太陽光発電パネル

ホストエレキ:ラズベリーパイ, ルータ, リレー, FADC

ローカルエレキ:高圧電源、 アンプなど

チャージコントローラと バッテリ

自動観測システムの構築


検出器保護システム

現状ではレンズの内側のロールカーテン を手動で開閉している

● 電動シャッターを選定

● 年度内に試験予定

レンズ内側に設置するハニカムサーモスクリーン

まとめ

- 次世代の最高エネルギー宇宙線観測のための 大気蛍光望遠鏡の研究開発
 - 大規模化を見据えた低コスト化
 - 質量組成を測定するためのXmax観測
- TA実験サイトに設置し、試験観測中
- 宇宙線の試験観測により宇宙線空気シャワーイベントの検出に成功している
- 望遠鏡の構成の最適化を進めている
- 自動観測システムを構築
- 今後ともTAサイトにて観測を続けていきたい

