平成30年度 共同利用提案計画実施報告

研究代表者 高橋 信介(弘前大学)

共同研究者

岬暁夫埼玉大学名誉教授国立モスクワ大学スコベルチン名称原子核研究所客員教授国立アルタイ大学招聘教授

LPM Shower のエネルギー決定問題 「10²¹eV 以上の超高エネルギー電子ニュートリノ天文学」 の基礎研究

特徴

日本の宇宙線研究が始まって以来、初めての、日本の宇宙線研究者が、世界の宇宙線研究者に先駆けて「新しい研究領域」の開拓 CRC結成以来、「初めてのこと」

何故、現在、[10²¹ eV] なのか?

空気シャワー(ハドロン物理学)における「最高エネルギールギー」(~ 10²¹ eV)は、1993年AGASA(**Teshima**)によって「発見」、ならば、、 ニュートリノ天文学(レプトン物理学)でこれを狙う

このための「第一基礎作業」は、1990年、30年弱以前に、 完成、

Misaki,:

Study of Electromagnetic Cascade Showers with the LPM effect in Water for the Detection of Extremely High Energy Neutrinos (Fortschritte der Physik, 38(1990)6,413-446

Aya Ishihara の{Pev 現象} の"発見"が、A.Misakiの「10²¹ eV」構想促進に 「火をつけた」

現在、新学術領域「ニュートリノで開く素粒子と宇宙」の科研費研究に応募 Aya Ishihara、懸命にこの実現を妨害

Nishimura-Kamata function (N-K function)

NKG function

LPM effect

/ Fortshritte der Physak (East Germany)

19901

1990 = Ice Cube AMANDO To Tit C+ 11/1

Fortschr. Phys. 38 (1990) 6, 413-446

A Study of Electromagnetic Cascade Showers with the LPM Effect in Water for the Detection of Extremely High Energy

Neutrinos

起気マスルキーニュートリノの下気化 An application of the matrix method to LPM showers

AREO MISARI - 4F 12 F

Department of Physics, Faculty of Science, Saitama University, Shimo-Okubo 255, Urawa, 338 Japan

Summary

The matrix method given by Fujimski and Misski is proved to be a powerful means for the calculations of electromagnetic cascade showers at extremely high energies. The method is essentially simple and has wide applications for the calculation of cascade showers. This method is used for the calculation of the cascade showers with the LPM effect in water, for the detection of extremely high energy neutrinos. The characteristics of LPM showers in water are extracted referring to cascade showers in the absence of the LPM effect.

Fig. 2g: Transition curves of electron numbers in water under Approximation B initiated by a photon of 10^{21} eV for various threshold energies. The letter attached to each curve denotes the threshold energies: $a = 10^3 \text{ eV}$, $b = 10^6 \text{ eV}$, $c = 10^7 \text{ eV}$, $d = 10^8 \text{ eV}$, $e = 10^9 \text{ eV}$

LPM shower 1021 eV

Fig. 3g: Transition curves of electron number in water in the presence of the LPM effect including ionization loss. The primary energy is 10^{21} eV and the letter attached to each curve denotes the threshold energy: $a = 10^{3} \text{ eV}, b = 10^{5} \text{ eV}, c = 10^{7} \text{ eV},$

 $d = 10^8 \text{ eV}, e = 10^9 \text{ eV}$

平均的标志气氛

From the law of energy conservation, we obtain

 $F_{\text{LPM(BH)}}(E_0/\varepsilon, t = \infty) = 1.$

(12)

19907

三ヤワアーガーアリンあける理量のLPM×BHの根書

432

~ max

AKEO MISAKI, Electromagnetic Cascade Showers

(1/2 10 17 BI+)

Table 5

Numerical values for electron number at shower maximum, N_{\max} , depth of shower maximum, T_{\max} and full width half maximum, FWHM, in both BH and LPM showers including ionization loss in water. Numerical values without parenthese are due to a LPM shower, while the corresponding ones in parentheses are due to a BH shower

1015	1016	1017	1018	1018	1020	1021
1.04 · 10 ⁶	8.31 · 10 ⁶	$4.58 \cdot 10^{7}$	$1.73 \cdot 10^8$	$5.82 \cdot 10^8$	$1.91 \cdot 10^9$	6.16 · 10 ⁹
(1.07 · 10 ⁶)	(1.00 · 10 ⁷)	(9.48 $\cdot 10^{7}$)	(9.04 $\cdot 10^8$)	(8.63 · 10 ⁹)	(8.26 $\cdot 10^{10}$)	(7.97 · 10 ¹¹)
18 (r.l.)	24 (r.l.)	38 (r.l.)	78 (r.l.)	200 (r.l.)	569 (r.l.)	1696 (r.l.)
(17 (r.l.))	(19 (r.l.))	(22 (r.l.))	(24 (r.l.))	(26 (r.l.))	(29 (r.l.))	(31 (r.l.))
13 (r.l.)	16 (r.l.)	28 (r.l.)	75 (r.l.)	223 (r.l.)	676 (r.l.)	2049 (r.l.)
(12 (r.l.))	(13 (r.l.))	(14 (r.l.))	(15 (r.l.))	(15 (r.l.))	(16 (r.l.))	(17 (r.l.))
	10 ¹⁵ 1.04 · 10 ⁶ (1.07 · 10 ⁶) 18 (r.l.) (17 (r.l.)) 13 (r.l.) (12 (r.l.))	$\begin{array}{cccc} 10^{15} & 10^{16} \\ \hline 1.04 \cdot 10^6 & 8.31 \cdot 10^6 \\ (1.07 \cdot 10^6) & (1.00 \cdot 10^7) \\ 18 (r.l.) & 24 (r.l.) \\ (17 (r.l.)) & (19 (r.l.)) \\ 13 (r.l.) & 16 (r.l.) \\ (12 (r.l.)) & (13 (r.l.)) \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

In Table 6, the fractional dissipated energies are given for primary energies from 10^{15} eV to 10^{21} eV in a LPM shower and a BH shower, respectively. Comparing LPM showers with BH showers, it reveals that we need much more material for the design of a calorimeter in which the LPM showers are absorbed than assumed usually at higher energy. At a primary energy of 10^{21} eV, we need one hundred times as much material for the absorption of the cascade shower in the presence of the LPM effect than in the absence of the effect!!

シャワーカーブにおける物理量の LPMとBHの相違(カッコ内はBH)

Table 5. Numerical values for electron number at shower maximum, N_{max} , depth of shower maximum, T_{max} , and full width half maximum, FMHM, in both BH and LPM showers including ionization loss in water. In each row, numerical values on upper row are due to a LPM shower, while the corresponding ones on lower row are due to a BH shower.

E_{0}/eV	10 ¹⁵	10 ¹⁶	10 ¹⁷	10 ¹⁸	10 ¹⁹	10 ²⁰	10 ²¹
N _{max}	1.04×10^{6}	8.31×10^{6}	4.58×10^{7}	1.73×10^{8}	5.82×10^{8}	1.91×10^{9}	6.16×10^{9}
	1.07×10^{6}	1.00×10^{7}	9.48×10^{7}	9.04×10^{8}	8.63×10^{9}	8.26×10^{10}	7.97 × 10 ¹¹
T _{max}	18 (r.l.)	24 (r.l.)	38 (r.l.)	78 (r.l.)	200 (r.l.)	569 (r.l.)	1696 (r.l.)
	17 (r.l.)	19 (r.l.)	22 (r.l.)	24 (r.l.)	26 (r.l.)	29 (r.l.)	31 (r.l.)
FWHM	13 (r.l.)	16 (r.l.)	28 (r.l.)	75 (r.l.)	223 (r.l.)	676 (r.l.)	2049 (r.l.)
	12 (r.l.)	13 (r.l.)	14 (r.l.)	15 (r.l.)	15 (r.l.)	16 (r.l.)	17 (r.l.)

Reproduced from: A.Misaki, Fortschr. Phys. 38 (1990) 413-446.

Table 6

Fractional dissipated energies of electrons in water in both LPM and BH showers, for primary energies from $10^{15} \, {\rm eV}$ to $10^{51} \, {\rm eV}$

Fwater	1015 eV	1016	1017	1028	1019	1000	1021
0.1	12.6	17.0	27.0	51.5	194	990	1001
	(11.6) (r.L)	(13.6)	(15.4)	(17.4)	/16 2)	008	1001
0.2	14.5	19.5	31.1	69.3	154	(21.3)	(23.6)
	(13.6)	(15.6)	(17.7)	(19.7)	(91.0)	(02.0)	1289
0.3	16.1	21.5	34.4	70.8	180	(20.9)	(20.9)
	(15.0)	(17.3)	(19.2)	(21.5)	(93 7)	195 01	1.529
0.4	17.3	23.2	37.6	78.9	203	(20.8)	(28.0)
	(16.4)	(18.7)	(20.8)	(23.1)	(25.4)	(97 5)	1793
0.5	18.8	24.8	40.6	86.9	997	(27.0)	(29.8)
	(17.7)	(19.9)	(22.3)	(24.6)	(26.9)	/90 m	1982
0.6	20.1	26.5	43.8	95.4	253	(20.2)	(31.3)
	(19.0)	(21.4)	(23.8)	(26.2)	(28.6)	(30.0)	2224
0.7	21.5	28.4	47.3	105	281	(30.3)	(00.0)
	(20.4)	(22.9)	(25.5)	(27.9)	(30.4)	(99.01	2988
0.8	23,3	30.6	51.9	117	318	025	(33.2)
	(22.1)	(24.8)	(27.3)	(29.9)	(32.5)	(25.0)	2800
0.85	24.4	32.1	54.1	125	341	1007	2100
12/200	(23.3)	(25.9)	(28.6)	(31.2)	(33.8)	(38.4)	(20 0)
0.9	25.9	33.9	58.8	134	371	1102	2 (25
12/22/2	(24.7)	(27.4)	(30.1)	(32.9)	(35.3)	(38.0)	0 ± 00
0.95	27.9	36.3	62.8	149	415	1946	2005
	(26.8)	(29.4)	(32.1)	(34.9)	(37.7)	(40.3)	(42.0)
0.98	29.9	38.6	68,6	163	461	1404	4848
_	(28.5)	(31.5)	(34.7)	(28.0)	(40.8)	ATUT (2025

9例8日マスルキー そちらに必定す海上 平ちら猫後

LPMi+ 4848 r.e BHI+ 45.6 r.そ の理士 記述要とする

	F water	10 ¹⁵	10 ¹⁶	10 ¹⁷	10 ¹⁸	10 ¹⁹	10 ²⁰	10 ²¹
T.	0 1	12.6	17.0	27.0	51.5	124	339	1001
L	U. 1	(11.6)	(13.6)	(15.4)	(17.4)	(19.3)	(21.3)	(23.6)
Т	0.2	14.5	19.5	31.1	62.3	154	441	1289
Т	0.2	(13.6)	(15.6)	(17.7)	(19.7)	(21.9)	(23.9)	(25.9)
Т	03	16.1	21.5	34.4	70.8	180	510	1529
Т	0.5	(15.0)	(17.3)	(19.2)	(21.5)	(23.7)	(25.8)	(28.0)
L	0 1	17.3	23.2	37.6	78.9	203	582	1753
Т	0.4	(16.4)	(18.7)	(20.8)	(23.1)	(25.4)	(27.5)	(29.8)
Т	05	18.8	24.8	40.6	86.9	227	655	1982
L	0.5	(17.7)	(19.9)	(22.3)	(24.6)	(26.9)	(29.2)	(31.5)
Т	06	20.1	26.5	43.8	95.4	253	734	2224
L	0.0	(19.0)	(21.4)	(23.8)	(26.2)	(28.6)	(30.9)	(33.3)
L	07	21.5	28.4	47.3	105	281	823	2488
L	0.7	(20.4)	(22.9)	(25.5)	(27.9)	(30.4)	(32.8)	(35.2)
Т	00	23.3	30.6	51.9	117	318	935	2866
L	U. O	(22.1)	(24.8)	(27.3)	(29.9)	(32.5)	(35.0)	(37.5)
L	0.05	24.4	32.1	54.1	125	341	1007	3106
L	0.05	(23.3)	(25.9)	(28.6)	(31.2)	(33.8)	(36.4)	(38.9)
L	0.0	25.9	33.9	58.8	134	371	1102	3435
L	0.9	(24.7)	(27.4)	(30.1)	(32.9)	(35.3)	(38.0)	(40.7)
¥	0.05	27.9	36.3	62.8	149	415	1246	3985
	0.95	(26.8)	(29.4)	(32.1)	(34.9)	(37.7)	(40.3)	(43.0)
	0 00	29.9	38.6	68.6	163	461	1404	4848
	-0.90	(28.5)	(31.5)	(34.7)	(36.9)	(40.5)	(42.6)	(45.6)

Table 6.

Fractional dissipated energies of electrons in water in both LPM and BH showers, for primary energies from 10¹⁵ eV to 10²¹ eV.

> LPMは4848 r.l. BHは45.6 r.l. の深さを必要とする

9割8分エネルギーを 失うのに必要な深さ

エネルギー損失の比

平均的描像

Reproduced from: A.Misaki, Fortschr. Phys. 38 (1990) 413-446.

J. Phys. G: Nucl. Part. Phys. 17 (1991) 719-732. Printed in the UK

LPM shower 12 51-5 FISTS FRECS

On the characteristics of individual cascade showers with the LPM effect at extremely high energies

E Konishi†, A Adachi‡, N Takahashi§ and A Misaki

† Department of Information Science, Hirosaki University, Hirosaki, 036 Japan
‡ The Institute for Physical and Chemical Research, Wako-shi, 351-01 Japan
§ Faculty of General Eduction, Hirosaki University, Hirosaki, 036 Japan
|| Department of Physics, Saitama University, Japan

四き生き形はに

世界是初加的

Received 23 July 1990, in final form 26 November 1990

Abstract. Characteristics of individual electromagnetic cascade showers in lead have been studied taking into consideration the Landau-Pomeranchuk-Migdal effect (LPM effect) through Monte Carlo simulation techniques. A total of 20 LPM showers have been simulated assumed to be initiated by photons or electrons of energy 10¹⁷ eV. We find that each of the twenty simulated showers shows multi-peak structure during its longitudinal development, unlike the smooth cascade curve obtained for showers simulated using Bethe-Heitler cross sections. It is shown that thin detectors with a depth of only few tens of radiation lengths, though good for observing showers without the LPM effect, do not provide reliable information on the real development of the LPM shower in extremely high energy regions.

1

4. Results and discussion

A total of 20 LPM showers have been simulated for a fixed value of 10^{17} eV for E_0 and 10^{9} eV for minimum cut-off energy E_{min} , of these showers ten were initiated by photons and the other ten by electrons. The details of the simulation procedure are

Figure 3. The average number N of electrons in photon-initiated showers of primary energy $E_0 = 10^{17} \text{ eV}$ in lead as a function of depth in the absorber. The three curves refer to three different values of sutoff energy E_{ge1} 10⁶, 10¹² and 10¹⁶ eV. The full smooth curves give the corresponding results obtained from the numerical method.

Figure 7. Number N of electrons in a photon-initiated shower (no. 1) of primary energy $E_0 = 10^{17} \text{ eV}$ in lead as a function of depth in the absorber. The three curves refer to three different values of cutoff energy E_m , 10^9 , 10^{12} and 10^{14} eV .

Figure 8. Number N of electrons in a photon-initiated shower (no. 3) in lead with $E_0 = 10^{17} \text{ eV}$ and $E_m = 10^9 \text{ eV}$.

若い研究者に提案:前人未踏の新しい研究分野:「10²¹ eV以上の電子 ニュートリノ天文学の基礎研究」をロシアの若い世代 ——中国の若い世 代も視野に容れて ——の共同研究を国際的に行おうではないか。 提案 者の岬 暁夫は、現在83歳、遠からず、あの世に行く。 あとは、諸君 の時代がくる。

(連絡先:amisaki@sand.ocn.ne.jp、あるいは、akeobarn@gmail.com)

岬 暁夫の「独断と偏見」によれば、現在のCRCの研究に夢に満ちた実験 計画は一つもない。 反論があれば、大歓迎。日本製のアイディアで、世 界をのし上がっていく研究など皆無。

CRC 実行委を牛耳る"実力者"で世界を睥睨できる研究者は皆無。 かれらの本質は、"役人"研究者。 これに従っていけば、若い研究者の末路は明らかである。

研究成果は以下で発表 26th Extended European Cosmic Ray Symposium 35th Russian Cosmic Ray Conference Altai State University / Barnaul Belokurikha Russia / July 6-10, 2018

A historical Introduction to the LPM shower

A. Misaki

Proc.(.Supple).Proc. [26th E+CRC 35th RCRC] (In press, July 5-to10, Barnaul, Russia)

Figure 2. Transition curves for a photoninitiated shower with energy $E_0 = 3 \times 10^{14}$ eV in lead. Reproduced from Proc.Inter. Cosmic Ray Symp. on High.Ener.Phys. 148(1974),Tokyo

xxxxxx 'xxxxxxxxxxx) x BH showe 10[°] 10 20 30 t(c.u.) Figure 3. Transition curves of mean number of electrons in lead. Open circles show the results with Bethe-Heitler crosssections ($E_0/E_{min}=10^3$) and closed circles, triangles and crosses show the results including the LPM effect initiated by photons with energies $E_0 = 10^{11}$, 10^{13} , 10^{15}

eV and $E_m = 10^8$, 10^{10} , 10^{12} eV, respectively.

LPM shower

Figure 4. Mean square lateral spread of electrons in lead. Marks are the same as figure 3. $< r^2 >$ is normalized by multiplying by the factor $(E_m/E_s)^2$, where E_m is the minimum energy of observation and E_s is the scattering energy E_s =21.2 MeV. The solid curve shows analytical results under approximation A.

Figure 5. Mean square angular spread of electrons in lead. Marks are the same as figure 3. $< \theta^2 >$ is normalized by multiplying by the factor $(E_m/E_s)^2$, where E_m is the minimum energy of observation and E_s is the scattering energy E_s =21.2 MeV. The solid curve shows analytical results under approximation A.

Figure 6. Comparison between the present results and the results obtained by Konishi et al. [4]. The comparison is made for LPM showers without ionization loss in lead, keeping E_0/E_{th} fixed and values of $E_0=10^{11}$, 10^{13} , 10^{15} eV. The crosses, closed circles and open circles denote $E_0=10^{15}$, 10^{13} , 10^{11} eV respectively. From A.Misaki, Phys.Rev,D,40, (1989)3086-3096

Figure 7. Transition curves of electron numbers in water under Approximation B initiated by a photon of 10^{20} eV for various threshold energies. The letter attached to each curve denotes the threshold energies: a=10³ eV, b=10⁶ eV, c=10⁷ eV, d=10⁸ eV, e=10⁹ eV. From: A.Misaki, Fortschr. Phys. 38 (1990) 413-446

Figure 8. Transition curves of electron numbers in water in the presence of the LPM effect including ionization loss. The primary energy is 10²⁰ eV and the threshold energies, *a* to *e* are the same as in figure 7. From: A.Misaki, Fortschr. Phys. **88** (1990) 413-446

Figure 9. Number N of electrons in an electron-initiated shower of primary energy $E_0 = 10^{17}$ eV in lead as a function of depth in the absorber. The three curves refer to three different values of cut off energy $E_m = 10^9$, 10^{12} , 10^{14} eV. From: Konishi et al, Phys.G: Nucl.Part.Phys. **17**(1991)719-732

A Fundamental of the LPM showers in water up to 10²¹ eV

K.Kato, T.Tanemori, N.Takahashi, A.Misaki Proc.(.Supple).Proc. [26th E+CRC 35th RCRC] (In press, July 5-to10, Barnaul, Russia)

Figure 1. Cascade curves for electrons by the averaged LPM showers with different primary energies from 10^{15} eV to 10^{23} eV for keeping of $E_{prim}/E_{min}=10^5$. The average BH shower with 10^{15} eV is attached for readers' reference.

Figure 2. In two reasons, LPM effect appear clear, (1) average picture is clearly different from that of the BH shower(see, Figure 1,also), (2) the real one shows clear fluctuation compared with the average picture.

Figure 3. The multiple peak structure of the LPM shower in water clearly appears $\sim 10^{17}$ eV.

Figure 4. The LPM shower with 10¹⁸ eV. The typical structure of the multi-peak structure.

Figure 5. The separated sub-showers appear in ~10¹⁹eV. A deformed kind of multi-peak structure.

Figure 6. An example of two separated sub-showers with 10²⁰ eV.

Figure 7. The LPM shower with 10²¹ eV traverses with many multi-peak without producing sub-shower. Notice that shower traverse 6000 c.u. (~ 2100 meter!!).

Figure 8. Track length of a LPM shower with primary energy $E_p = 10^{20}$ eV.

Figure 9. Track length of a LPM shower with primary energy $E_p = 10^{21}$ eV.

On energy estimation of high energy muon events in KM3 detector based on a more exact range fluctuations of high energy muons

N.Takahashi, Y.Okumura, T.Tanemori, A.Misaki Proc.(.Supple).Proc. [26th E+CRC 35th RCRC] (In press, July 5-to10, Barnaul, Russia)

Topology of Muon Events

Figure 2. Transition curves for Cherenkov light in the cases of both generated Cherenkov lights and observed ones ($\lambda = 40$ m).

Figure 3. The lateral distribution for generated Cherenkov Lights integrated by depth.

Figure 4. cos θ distribution of the generated Cherenkov lights for the parent muon and cascade shower electrons integrated by depth.

Figure 5. A part of the arrival time distribution of the generated Cherenkov light. The Cherenkov light yields due to bremsstrahlung are clearly registered. The time is measured from the generation points for the parent muon. The time resolution is one nanosecond. **Table 1.** The generated Cherenkov lights for three *Fully Contained Events*. B, N, D, B+N+D denote the kinds of interactions, namely, bremsstrahlung, nuclear interaction, direct production, and the total number of interactions, respectively. M (muon), E (shower), M+E denote generated Cherenkov lights due muon, electron shower, muon + electron shower (generated total Cherenkov lights), respectively.

	Traversed depth	Number of Interactions			Generated Cherenkov			
	(<i>m</i>)	В	Ν	D	B + N + D	M: muon	E: shower	M + E
# <i>FC</i> - 4	491.8	1	0	46	47	1.23×10^{7}	7.27×10^{7}	8.50×10^{7}
# <i>FC</i> - 390	603.8	1	3	34	38	1.51×10^{7}	6.63×10^{7}	8.14×10^{7}
#FC - 401	975.6	3	1	64	68	2.44×10^{7}	6.10×10^{7}	8.53×10^{7}

Observed Yield	Total	$\sum E_{Shower}$	Σμ
60 c.u.	6.92×10^{7}	6.05×10^{7}	8.69×10^{6}
Ratio	8.15×10^{-1}	8.33×10^{-1}	7.07×10^{-1}
120 <i>c</i> . <i>u</i> .	6.68×10^{7}	6.03×10^{7}	6.44×10^{6}
Ratio	7.86×10^{-1}	8.30×10^{-1}	5.24×10^{-1}
240 c.u.	1.74×10^{7}	1.35×10^{7}	3.85×10^{6}
Ratio	2.04×10^{-1}	1.48×10^{-1}	3.13×10^{-1}
480 c.u.	1.51×10^{7}	1.33×10^{7}	1.83×10^{6}
Ratio	1.78×10^{-1}	1.83×10^{-1}	1.49×10^{-1}

Table 2. The dependence of the ratios of observed Cherenkov lights to generated ones in the unit length for their measurement given for one example of Fully Contained Events (#FC-4).

Figure 6. Range distributions for the incident muons with incident energies 10¹² eV to 10¹⁵ eV. The minimum observation energies are taken as 10⁹ eV. Each sampling number is 1000.

「搖動」問題

「信頼できるエネルギー決定」とは、理論的に言えば、 「どれだけ、シャワー粒子のトラックレングスが測定でき るか」ということである。

エネルギーが、シャワー粒子の直接観測、チェレンコフ輻 射、電波、音響輻射、のいずれを「経由する」としても、 その本質は、「シャワー粒子のトラックレングス問題」に 帰着する

Hybrid calculation of LPM shower

本研究の目的(結論)

最終的: 「10²¹ eV 以上の超高エネルギー電子ニュートリノ 天文学の実験的研究」

途中段階 テストプラントの建設 大規模な計算機数値実験 LPM shower の諸特性および関連研究 LPM shower の搖動の研究 BH shower に関する「基準点的」研究 ミューオンニュートリノ事象の形態学的研究 (これは、Icecube, Antares,Baikal-GVD の解析と直結)