スーパーカミオカンデにおける 太陽ニュートリノ観測と SK-Gdに向けた準備

中島 康博 (ICRR)

東京大学宇宙線研究所 平成30年度共同利用研究成果発表会 2018年12月21日

- 太陽ニュートリノ観測
 - 解析手法の改善
 - 最新結果
- SK-Gdに向けた準備
 - 超新星背景ニュートリノの探索
 - SKタンク補修・改造工事
- まとめと今後の展望

太陽ニュートリノ観測

太陽ニュートリノ観測

- スーパーカミオカンデでは、B8, Hep ニュートリノに感度
- 目的:
 - ニュートリノ振動パラメターθ₁₂,
 Δm²₂₁の測定
 - MSW 効果の精密検証
 - Matter dominantからVacuum dominant領域への遷移の観測 (アップターン)
 - 昼夜効果を用いた地球による
 MSW効果の測定

解析手法の改善

- PMTのゲインが徐々に増加しており、それに伴いヒット数も増加
- ヒット数増加の効果を実データを 用いて評価し、これを補正するようにエネルギー再構成手法を改善

^{01/01/09 01/01/10 01/01/11 01/01/12 01/01/13 01/01/14 01/01/15 01/01/16 01/01/17}

5

太陽ニュートリノフラックス

- 2018年1月までのデータ(SK-IV live days: 2860days)を用いて解析
- 改善したエネルギー再構成手法を用いて事象 選択
- これまでに9万事象以上の太陽ニュートリノ を観測
- ニュートリノフラックスは、各時期間でコン
 システント

	E kin [MeV]	Livetime[day]	Extracted signal	8B Flux [×10 ⁶ /cm ² /sec]
SK-I	4.5-19.5	1496	22404 \pm 226 (stat.)	2.38 ± 0.02 (stat.) ± 0.08 (sys.)
SK-II	6.5-19.5	791	7213 ⁺¹⁵³ ₋₁₅₁ (stat.)	2.41 ± 0.05 (stat.) $^{+0.16}_{-0.15}$ (sys.)
SK-III	4.0-19.5	548	8148 ⁺¹³³ ₋₁₃₁ (stat.)	2.40 ± 0.04 (stat.) ± 0.05 (sys.)
SK-IV	3.5-19.5	2860	55729 ⁺³⁶³ -361 (stat.)	2.29 ± 0.02 (stat.) ± 0.04 (sys.)

太陽ニュートリノスペクトラム

ニュートリノ混合角測定結果

8

他の太陽ニュートリノ関連の結果

- Solar neutrino non-standard interactions (NSI)
 - NSIによる太陽ニュートリノスペクトラムの変化を探索
 - アップターンの構造にも寄与
 - 論文準備中
- <u>Atmospheric neutrino NCQE interaction</u>
 - 超新星背景ニュートリノのバックグラウンドとなる、
 大気ニュートリノ中性カレント反応の測定
 - 論文準備中

NSI spectrum fit

NCQE visible energy spectrum

他にも多くの解析が進行中

SK-Gdに向けた準備

SK-Gd計画

J. F. Beacom and M. R. Vagins, Phys. Rev. Lett. 93 (2004) 17110

- スーパーカミオカンデにGdを溶解することにより、中性子の検出効率を 飛躍的に向上させる。
- Gdの利点:
 - 中性子捕獲断面積が高く、0.1%の
 濃度で約90%の捕獲確率
 - 捕獲後、合計8MeVの比較的エネル ギーの高いγ線が放出される

先発信号(e+)と後発信号(n)の同時計測により 背景事象を排除し高感度v。観測が可能になる

Ve

11

Prompt

signal

SK-Gdで目指す物理

- 超新星背景ニュートリノの初観測
 - これまでの宇宙の歴史で起こった約10¹⁷個の超新星爆発からのニュートリノを観測
 - 宇宙の歴史を調べる新たなプローブ
- 近傍の超新星爆発に対する方向感度の向上
- Si-burningによる超新星爆発の予兆観測
- 陽子崩壊に対する背景事象削減
- ニュートリノ・反ニュートリノ弁別による、
 長基線および大気ニュートリノ振動測定精度の向上
- 原子炉ニュートリノの測定

SK-Gdに向けた準備

- 超低RIのGdの開発
 - 太陽ニュートリノ観測に問題無いRIレベルのGdの開発に成功。量産へ。
- 200トンタンク(EGADS)による実証試験
 - SKを模したタンクで、500回以上循環後もGdを失うことなく透過率を これまでのSKレベルに保つことに成功。
- SKタンクの水密化
- 新たな水循環装置による循環

これらのため、SKタンク 改修工事を行った

SKタンク改修2018 ^{改修工事の目的}

- 止水補強
 - これまでのSKタンクでは1日約1トンの水漏れがあった。Gd導入に備え水漏れを止めるとともに、例え 地震等の災害が発生しても新たな水漏れが発生しないよう、タンク内壁の溶接線全てに止水剤を塗布。
- タンク内配管の増強
 - 循環速度をこれまでの二倍の120t/hにし、Gd溶解直後のGd濃度の一様性を高め、かつ純化効率を向上さ せる。
- 不具合のある光電子増倍管(PMT)の交換
 - 内水槽・外水槽合わせて数百本のPMTを交換した。

2018年5月31日にタンクを開け、改修工事を開始

改修工事スケジュール

SKタンク止水補強工事

溶接部に塗る樹脂を業者とともに開発

・純水・Gd水溶液中への物質の溶出がすくなく、チェレンコフ光の透過率を低下させない ・ラドンの放出が少なく、低エネルギーバックグラウンドを増やさない

純水配管改造

- 120 t/hでの循環に対応
- 配管の上下対称性を大きく改善
- より精密な流量コントロールが可能に

新しい配管

これまでの配管

給水+循環同時運転

- SK-Gd用に建設した循環装置を用い、給水中も循環純化を行っている。
- 給水完了後の水質を可能な限り高く保ち、物理観測の早期再開を目指す。

タンク内清掃

- 上記の作業と平行し、大規模なタンク内清掃も行った。
- 外壁およびPMT構造体の清掃による表面についたRIの低減
- 2001年の事故由来のガラス片の除去
- SUS以外の金属除去および錆落とし

まとめ

- 太陽ニュートリノ観測
 - 改善した解析手法を用い、SK-IVの最終結果をまとめている
- SK-Gdに向けた準備
 - 2018年5月31日より、タンク改修工事を行っている
 - 2019年初頭に純水での観測を再開予定
 - 2019年度中の0.01%Gd濃度での観測開始を目指している