スーパーカミオカンデにおける 大気ニュートリノ振動と 核子崩壊探索の最新結果

田中秀和 東京大学宇宙線研究所

東京大学宇宙線研究所共同利用発表会 2018年12月21日

Super-K publications in 2018

Atmospheric neutrino oscillation analysis with external constraints in Super-Kamiokande I-IV, Phys. Rev. D 97, 072001 (2018)

Measurement of the tau neutrino cross section in atmospheric neutrino oscillations with Super-Kamiokande, Phys. Rev. D 98, 052006 (2018)

Search for Boosted Dark Matter Interacting With Electrons in Super-Kamiokande, Phys. Rev. Lett. 120, 221301 (2018)

Dinucleon and nucleon decay to two-body final states with no hadrons in Super-Kamiokande arXiv:1811.12430 (submitted to PRL)

Paper in preparation:

Search for neutrinos from dark matter annihilation in the earth's core with the Super-Kamiokande detector

Atmospheric neutrino oscillation analysis with improved event reconstruction in Super-Kamiokande IV

スーパーカミオカンデ

- 1996年~現在
- 体積 50,000 tonの超純水
 チェレンコフ検出器
- 岐阜県神岡鉱山の地下
 1kmに設置
- 内水槽検出器 (32kton)
 - 11,129本の50cm径 PMT
- 外水槽検出器(18kton)
 - 1885本の20cm径 PMT

(photo by HPK)

広いエネルギーにある様々な物理を ーつの検出器で同時に研究できる Super-K Physics Targets 大^{風 2} 21 (10) ~1 GeV TeV

大気ニュートリノ

ve

 v_{μ}

 $\overline{\nu}_{\mu}$

 \overline{m}^0

地球の大気層

SKでの大気vを用いたv振動解析

Fully Contained (FC)

ニュートリノ質量階層性の決定

- 大気v 観測は質量階層性の測定感度が高い
- 地球コアでの物質効果(共鳴)によって質量階層性
 に依存して v_e / v_e 出現現象確率に差が生じる
 - Normal Hierarchy: v_µ→v_e 振動が enhance
 - Inverted Hierarchy: v
 _µ→v
 _e 振動が enhance
- → ~2-10GeV 前後の上むき ve と ve を比較

SKでの質量階層性の測定

Purity

Phys. Rev. D 97, 072001 (2018)

 $\sin^2 \theta_{23} = 0.588 \pm 0.031 \\ 0.064$

- Best fit point: $\theta_{23} > 45^{\circ}$
- ただし90% C.L.で θ₂₃=45° 許容

0.8

(SK-I~IV, 5326 days, 328kt·year)

- $0.550 \pm 0.039_{0.057}$ $2.50^{+0.05}_{-0.12} \times 10^{-3}$ $4.88 \pm ^{0.81}_{1.48}$ Normal $2.40^{+0.13}_{-0.05} \times 10^{-3}$ $0.550 \pm 0.035_{0.051}^{0.035}$ $4.54 \pm 0.97^{1.05}$ Inverted
- SK大気v δ_{CP}~270° (最大限のCPの破れ)を示唆
- 公開されている情報のみを用い、T2K実験による制限を導入
 - 例:θ₂₃に制限(質量階層性決定感度はθ₂₃に依存する)
- Normal Hierarchy & δ_{CP}~270°の示唆が強まる
 - IH rej. CLs test: SK only 80.6~96.7%→SK+T2K 91.5~94.5%

v_T出現現象探索

Pays. Rev. D98, 052006 (2018)

- v_r 出現現象 (v_µ→v_r 振動) 探索 • 夕ウは CC-v_r相? v_{μ} v_r t hadrons • CC-v_r 閾値: 3.5 GeV
 - "Upward-going" 事象として観測される
 - "Downward-going"事象は背景事象
 コントロールサンプル
 - (Primary v_τ flux は無視できるほど小さい)
 - タウの hadronic decay から生成される
 Multi-ring 事象を選択(Neural Network)
 - 主な背景事象: 深非弾性散乱事象

11

核子崩壞探索

2核子崩壊・1核子崩壊探索

arXiv:1811.12430 (submitted to PRL)

- Dinucleon and nucleon decay into two-body final state without any hadrons:
 - $pp \rightarrow e^+e^+$, $\mu^+\mu^+$, $e^+\mu^+$, $nn \rightarrow e^\pm e^\mp$, $\mu^\pm\mu^\mp$, $\gamma\gamma$..., and $p \rightarrow e^+\gamma$, $p \rightarrow \mu^+\gamma$
 - 2核子崩壊:8探索モード,1核子崩壊:2探索モード
- バリオン数・レプトン数が保存しない様々な崩壊モード
 - ex. Δ(B-L)=2
- 実験的に背景事象が少なく、信号が非常にクリーン
- p→e+/μ+π⁰ 探索と同様の探索手法(事象選択など)を
 使うことができる

2核子崩壊・1核子崩壊探索

arXiv:1811.12430 (submitted to PRL)

2核子崩壊の8探索モードおよび p→e+γ で候補事象なし

p→µ+γ モードでは2候補事象。ただしBkg expectation: ~0.7

- 信号事象の証拠は見つかっていない
- 過去の実験の探索から1~2桁以上高い核子寿命への制限

まとめ

- SK大気vは Normal Hierarchy を 80.6~96.7% で示唆
 - T2Kの制限を加えて 91.5~94.5% に強まる
 - CP対称性が最大限に破れている(δ_{CP}~270°)可能性を示唆
 Phys. Rev. D 97, 072001 (2018)
- v_τ 出現現象がない仮説を4.6σ で排除
 - CC-ντ 散乱断面積: (0.94 ± 0.20) × 10⁻³⁸cm

Phys. Rev. D 98, 052006 (2018)

- 2核子・1核子崩壊探索 → 核子崩壊の証拠は見つかっていない
 - 過去実験の制限より1~2桁上回る強い核子寿命の制限

arXiv:1811.12430 (submitted to PRL)

Future prospect

- SKでの大気v・核子崩壊探索の感度向上に向けた取り組み
 - 有効質量の拡大
 - ex. 22.5kton → ~27kton (+20%統計量, SK全期間)
 - 事象再構成アルゴリズムの改良
 - Vertex, momentum, PID
 - 核子崩壊 p→⊽K+: 脱励起 γ (6.3MeV) 検出効率の改良
 - 中性子水素捕獲信号(SK-IV, 効率~20%)を用いた v/v 分離
- SK-Gd
 - 中性子捕獲信号効率の飛躍的向上 (≥80%)

→ v/v の分離効率の向上

• 核子崩壊探索の背景事象をさらに半減 → 発見感度向上

