

液体キセノンを用いた暗黒物質探索

東大宇宙線研 小林兼好 On behalf of the XMASS collaboration

2018年12月21日 平成30年度東京大学宇宙線研究所共同利用研究成果発表会

				Х	(MASS	実験			Dark Matte	r	
	XM >	ASS 液の素岐 り	キセノンを用 目的実験。現 県神岡地下 furpose of the	いた低 見在の 1000r e first ph	ンバックグラウ 主ターゲットに mで観測中 nase is the dark	ンド、低閾(は暗黒物質 、matter searc	直 深 ch.				
		hist	ory of XM	ASS			Solar	neutrino		Double beta o	lecay
	2(010	2011	2012	2013	2014	2015	2016	2017	2018	
検出 (Sep	器建讀 0.2010	殳 二))	Iミッショニング (Dec. 2010 - May 2012)	ブ 枝 refur (Au - Oc	食出器 bishment ug. 2012 ct. 2013)	 データ取 既に4.54 	マ得を開始(年以上デー	Nov. 2013 - タを取得し) 続けている。		

小林兼好, XMASS, 平成30年度東京大学宇宙線研究所共同利用研究成果発表会

10.5m

- ▶ 832kgの液体キセノンを642本の2インチPMTで囲む。
- ▶ 光電覆率: 62%
- ▶ 検出器内側の直径:~800mm
- ▶ 高い光電子収量high light yield: ~15 PE/keV
- > Outer detector (水タンク)
 - ▶ 72本の20インチPMTで宇宙線ミューオンをveto
 - ▶ 水による環境ガンマ線、中性子の遮蔽。

平成30年度の主な活動と成果

● 発表論文

- 有効体積解析による WIMP 探索 (A direct dark matter search in XMASS-I) PLB789 (2019) 45-53
- 季節変動を用いた暗黒物質探索 (Direct dark matter search by annual modulation with 2.7 years of XMASS-I data) *PhysRevD97, 102006 (2018)*
- ¹²⁴Xe, ¹²⁶Xe の2v二重電子捕獲の探索 (Improved search for two-neutrino double electron capture on ¹²⁴Xe and ¹²⁶Xe using particle identification in XMASS-I) *PTEP* (2018) 053D03
- Hidden photon 及び axion-like 粒子の暗黒物質探索 (Search for dark matter in the form of hidden photons and axion-like particles in the XMASS detector) *PLB787 (2018) 153-158*
- 液体キセノンでの原子核反跳事象の発光時定数の測定 (A measurement of the scintillation decay time constant of nuclear recoils in liquid xenon with the XMASS-I detector) JINST 13 (2018) P12032
- 投稿中の論文
 - 低BG PMT (R10789)の開発 (Development of low radioactivity photomultiplier tubes for the XMASS-I detector) arXiv:1808.03617
 - 季節変動を用いたsub-GeV領域の暗黒物質探索 (Search for sub-GeV dark matter by annual modulation using XMASS-I detector) *arXiv:1808.06177*
 - WIMP核子、非弾性散乱の探索 (Search for WIMP-¹²⁹Xe inelastic scattering with particle identification in XMASS-I) arXiv:1809.05358
- データ収集・解析・R&D
 - 2013年11月から安定したデータ収集を継続中
 - 様々な物理解析を遂行中
- 共同利用研究費: 物品費 20万円、旅費 20万円

小林兼好, XMASS, 平成30年度東京大学宇宙線研究所共同利用研究成果発表会

有効体積解析による WIMP探索: データ

- データ
 - Nov. 20th, 2013 Mar. 29th, 2016
 - Livetime: 705.9days.
- 事象選択
 - Standard cut:ノイズ、チェレンコフ事象(PMTカ ソードの⁴⁰Kからのベータ線起因)を除去。
 - - 位置再構成による有効体積カット:時間、光量のそれぞれから事象の位置を再構成し、時間では中心から38cm以内(R(T) cut)、光量では20cm以内(R(PE) cut)の事象のみを使用。検出器表面からくるバックグラウンドを除去、
- すべてのカット (standard cut + R(T) cut + R(PE) cut)をかけると、レートは~4×10⁻³ /day/kg/keVee @ 5-5.5keVeeになる。

event selection (data)

小林兼好, XMASS, 平成30年度東京大学宇宙線研究所共同利用研究成果発表会

•

有効体積解析によるWIMP探索: バックグラウンド見積もり(3/3)

- データと同じ条件でバックグラウンドMCを作るため、定期的に取得している⁵⁷Co57 and ⁶⁰Coのキャリブレーションでの液体キセノン中での発光光量を同期。
- データ同様のlivetimeのバック グラウンドMCを作り事象選択を 行った。
- 残った~90%のバックグラウンド 事象は検出器表面起因で事象 再構成でvertexが内側にいった 事象だった。

Standard cut + R(T)<38cm+R(PE)<20cm (MC)

有効体積解析による WIMP探索: 結果

- データはバックグラウンドによる期待値と consistent_o
- エネルギー分布(2-15keVee)をバックグラ ウンドMCと WIMP MCでfitして見積もった。
- 90% CLでのexclusion limitは 60GeV WIMPs mass で2.2x10⁻⁴⁴cm²となった。
- PLB 789 (2019) 45-53. arXiv: 1804.02180.

季節変動による暗黒物質探索

暗黒物質による事象は地球が太陽の周りを回っていることから季 節変動することが期待される。季節変動の観測については DAMA/LIBRA実験がphase1+phase2合わせ11.9σ(1.04+1.13 ton・ year, 13 cycles)で観測したと主張しているが、他実験では観測され ていない。

XMASSでも探索を行ってきたが(PLB759(2016)272-276)、統計を増やし結果をまとめた (PRD97 (2018) 102006)。

- データを>2年サイクル使用 (1.82ton year)、低 閾値(1.0keVee, =4.8keVnr)
- 粒子識別は行わない (DAMA/LIBRA同様)

検出器の安定性

- Co57 線源によるキャリブレーションによりPEの変化を観測
 ①停電により突然下がった。
 ②純化作業
 ③キセノンガスを継続的に循環
- Run2はさらに安定 (Run1は前回の論 文で使用した期間(PLB2016)).
 (RMS of P.E. yield : 0.5%)
- キャリブレーションとMCを用い検出 器の安定性を解析した。
 - PEの変化は吸収長の変化で説明
 できる。
 - 相対光量のRMSは: Run1 0.6%, Run2 - 0.3%

季節変動による暗黒物質探索:結果

- 我々の観測はDAMA/LIBRA 領域を排除した。
- PhysRevD97, 102006 (2018)

Model assumption

T:1year, t0=152.5day (fixed) V_0 : 232.0 km/s V_{esc} : 544 km/s ρ_{dm} : 0.3 GeV/cm³ Lewin, Smith (1996)

モデルによらない季節変動の探索

Power spectrum

- Phase t₀ : free parameter. 1–6 keV_{ee}
- Test statistics : $\Delta \chi^2$ of model independent analysis between null and periodic hypotheses.
- 有意に変動がみられる周期は 50~
 600日にはなかった。

Hidden photon (HP)とAxion-like particle (ALP)暗黒物質探索: 動機

HP (vector boson super-WIMPs)

散乱断面積 (σ_{эна}):

$$\frac{\sigma_{\rm abs} v}{\sigma_{\rm photo}(\omega = m_V)c} \approx \frac{\alpha'}{\alpha}$$

(α': the vector boson analogue to the fine structure constant. v: the vector boson速度)

- 光電効果と同様の過程で検出できる
- 検出器での計測数 (S_v):

$$S_v \approx \frac{4 \times 10^{23}}{A} \frac{\alpha'}{\alpha} \left(\frac{\text{keV}}{m_V}\right) \left(\frac{\sigma_{\text{photo}}}{\text{barn}}\right) \text{ kg}^{-1} \text{ day}^{-1}$$

(A:atomic mass, standard local matter density: 0.3GeV/cm³)

Pospelov et, al. Phys. Rev. D 78 115012 (2008)

小林兼好, XMASS, 平成30年度東京大学宇宙線研究所共同利用研究成果発表会

ALP (pseudo-scalar boson super-WIMPs)

• 散乱断面積 (
$$\sigma_{abs}$$
):
 $\frac{\sigma_{abs}v}{\sigma_{photo}(\omega = m_a)c} \approx \frac{3m_a^2}{4\pi\alpha f_a^2}$ vor a
 $\frac{v \text{ or a}}{ze}$

(v: vector boson速度, m_a: pseudoscalar mass, f_a: dimensionful coupling constant.)

検出器での計測数:

$$S_a \approx \frac{1.2 \times 10^{19}}{A} g_{aee}^2 \left(\frac{m_a}{\text{keV}}\right) \left(\frac{\sigma_{\text{photo}}}{\text{barn}}\right) \text{ kg}^{-1} \text{ day}^{-1}$$

HPとALP暗黒物質探索:手法

- データ:
 - Nov. 2013 Jul. 2016 (livetime 800days)
- データ選別:
 - standard cut + fiducial volume cut (R<30cm) (327kg FV)
- NPE分布でピークとして観測できる。

HPとALP暗黒物質探索:結果

- 440-2650NPE_{corr} (30-180keV γ)の領域をバッ クグラウンド+信号(ピーク)でフィットし探索
- 有意な信号は得られなかった。40-120keV/c² では共に最も強い制限を与えた。
- PLB787 (2018) 153-158

まとめ

- ➤XMASS実験は2013年から4年以上安定的に観測を続けている。
- ➤ バックグラウンドを精査し、有効体積解析によるWIMP探索をお こなったが有意なWIMP信号は観測されなかった。質量60GeV のWIMPsでは 2.2x10⁻⁴⁴cm²まで排除した。
- ▶季節変動を用いた暗黒物質探索では1.82ton·yearという大統計 でおこなったが有意なWIMP信号は観測されなかった。この結果 DAMA/LIBRA 領域を排除した。
- ➢ hidden photon and axion like particleの暗黒物質探索では信号 はみつからなかったが40-120keV/c²で最も強い制限をつけた。
- ▶解析は継続して行っていく予定。新たに3本の論文が審査中。
 ▶2018年度内にデータ取得を終了予定。

backup

小林兼好, XMASS, 平成30年度東京大学宇宙線研究所共同利用研究成果発表会

XMASS collaboration

ICRR, University of Tokyo	K. Abe, Y. C. Chen, K. Hiraide, K. Ichimura, S. Imaizumi, N. Kato, Y. Kishimoto, K. Kobayashi, M. Kobayashi, S. Moriyama, M. Nakahata, K. Sato, H. Sekiya, T. Suzuki, S. Tasaka, A. Takeda, M. Yamashita
Kavli IPMU, University of Tokyo	K. Martens, A. Mason, Y. Suzuki, B. Xu
Kobe University	K. Miuchi, Y. Takeuchi
Tokai University	K. Nishijima
Tokushima University	K. Fushimi
Yokohama National University	S. Nakamura
Miyagi University of Education	Y. Fukuda
Nihon University	H. Ogawa
ISEE, Nagoya University	Y. Itow, K. Kanzawa, R. Ishii
IBS	N.Y. Kim, Y. D. Kim
KRISS	Y. H. Kim, M. K. Lee, K. B. Lee

11 institutes, 36 collaborators

WIMP search in the fiducial volume

Location of RI	RI	Activity [mBq/detector]	Activity [mBq/detector]
		initial value of the fit	the best fit value
LXe	²²² Rn	-	8.53±0.16
	⁸⁵ Kr	-	0.25±0.04
	³⁹ Ar	-	0.65±0.04
	¹⁴ C	-	0.19 ± 0.01
copper plate and ring	²¹⁰ Pb	-	(6.0±1.0)×10 ²
copper surface	²¹⁰ Pb	-	0.7±0.1
PMT quartz surface	²¹⁰ Pb	-	6.4±0.1
PMT	²³⁸ U	(1.5±0.2)×10 ³	(2.0±0.2)×10 ³
(except aluminum seal	²³² Th	$(1.2\pm0.2)\times10^3$	$(1.1\pm0.3)\times10^3$
and quartz surface)	⁶⁰ Co	(1.9±0.1)×10 ³	(1.6±0.2)×10 ³
	⁴⁰ K	(5.8±1.4)×10 ³	(9.6±1.7)×10 ³
	²¹⁰ Pb	(1.3±0.6)×10 ⁵	(2.2±0.7)×10 ⁵
PMT aluminum seal	²³⁸ U	(1.5±0.4)×10 ³	(9.0±4.1)×10 ²
	²³⁵ U	(6.8±1.8)×10 ¹	(4.1±1.8)×10 ¹
	²³² Th	(9.6±1.8)×10 ¹	(5.5±2.2)×10 ¹
	²¹⁰ Pb	(2.9±1.2)×10 ³	$(3.4 \pm 1.2) \times 10^3$
Detector vessel,	²³⁸ U	(1.8±0.7)×10 ³	(9.0±7.6)×10 ²
holder and filler	²³² Th	(6.4±0.7)×10 ³	(6.4±3.2)×10 ³
	⁶⁰ Co	(2.3±0.1)×10 ²	$(3.0\pm1.9)\times10^2$
	²¹⁰ Pb	-	(3.8±0.5)×10 ⁴

Contents	Systematic error			
	2-15 keV _{ee}	15-30 keV _{ee}		
(1) Plate gap	+6.2/-22.8%	+1.9/-6.9%		
(2) Ring roughness	+6.6/-7.0%	+2.0/-2.1%		
(3) Copper reflectivity	+5.2/-0.0%	+2.5/-0.0%		
(4) Plate floating	+0.0/-4.6%	+0.0/-1.4%		
(5) PMT aluminum seal	+0.7/-0.7%	-		
(6) Reconstruction	+3.0/-6.2%	-		
(7) Timing response	+4.6/-8.5%	+0.4/-5.3%		
(8) Dead PMT	+10.3/-0.0%	+45.2/-0.0%		
(9) LXe property	+0.7/-6.7%	+1.5/-1.1%		

F成30年度東京大学宇宙線研究所共同利用研究成果発表会