48Caの二重ベータ崩壊の研究

大阪大学核物理研究センター 梅原さおり umehara@rcnp.osaka-u.ac.jp **CANDLES** Collaboration □⁴⁸Caの二重ベータ崩壊 ■測定状況 ■改造予定 ■次世代検出器に向けた開発 ■まとめ

二重ベータ崩壊

ニュートリノを放出しない二重 ニュートリノを放出する二重 ベータ崩壊 ベータ崩壊 **B**線 β線 ニュートリノ 反ニュートリノ 反ニュートリノ 反ニュートリノ 原子核 原子核 **B**線 B線 反ニュートリノ ⇔ ニュートリノ □ニュートリノを放出する二重ベータ崩壊 ■観測済み、⁷⁶Ge, ⁸²Se, ¹⁰⁰Mo, ¹³⁶Xe, etc ■半減期:10¹⁸~10²⁰年 □ニュートリノを放出しないニ重ベータ崩壊 ■現在未観測 ■ニュートリノ:マヨラナ粒子、レプトン数非保存

CANDLES III

神岡宇宙素粒子研究施設

□ CANDLES システムで観測される波形

エネルギースペクトル

□ 131日の測定結果

エネルギース	● デー 一 全 ? 一 白 結 ー 結 に に ペクト	-タ Simデー 生子捕獲 晶内部: 晶周辺 ルと	·タ ²⁰⁸ TI — ²¹² Bi 勿質	
BGシミュレー	-ション	 b7 c		
		270	rystais	
10	+			
			1	
1 June	and the	.		
10				
10				
3000 3500	4000	4500	5000 Energy(ke	5500 2V)
(χ²<	1.5, -3	σ <si<′< td=""><td>lσ)、</td><td></td></si<′<>	lσ)、	

	結果	D
0νββ検出効率	0.39 ± 0.06	ounts
事象数(exp)	0(27CaF ₂), 10(95CaF ₂)	0
予想されるBG量	~1.2,~11	
0νββ半減期	>6.2×10 ²² year(27個) >3.8×10 ²² year(95個)	
測定感度	3.6×10 ²² year(27個)	j

6.2×10²²year(95個)

* 先行検出器ELEGANT VI 測定時間: 4947kg•day(2年強) 半減期 : 5.8×10²²年 (χ²<1.5, -3σ<SI<1σ) -2σ<事象位置<2σ、 with ²⁰⁸TI cut

CaF₂結晶に含まれる不純物量

□不純物量のばらつき

²¹⁴Bi(U-chain)…平均 36µBq/kg、純度差は最大14倍 ²²⁰Rn(Th-chain)…平均 20µBq/kg、純度差は最大10倍 ・步留まり率に影響

置き換え結晶

次世代検出器: 蛍光熱量検出器

次世代検出器で予想されるBG: 2vββ事象、α線
熱量検出器:高エネルギー分解能
2vββ事象を低減するため
蛍光熱量検出器:高い粒子弁別能力
β線-α線の粒子弁別によるBG低減のため

□ CaF₂(pure)結晶を蛍光熱量検出器として使用成功。
■エネルギー分解能(σ):1.86±0.11%
■要分解能改善のための開発
■ 低いいたび=ロンジカ世体検出器問発すめざす

□低バックグラウンド次世代検出器開発をめざす

まとめ

□48Caの二重ベータ崩壊の測定

■安定測定を継続

- ■2019年より結晶の入れ替え作業を開始予定
- ■並行して蛍光熱量検出器、濃縮の開発
- ■他、神岡施設の中性子量測定
 - ■早稲田大、神戸大、東北大、、、
- □予算:査定額
 - ■旅費15万円:13万円執行済み
 - ■サポートありがとうございました。