Over View on Dark Matter Models and Neutrino Signals

VHEPA2019 2/19/2019 Masahiro Ibe (ICRR)

DM makes up 27% of total energy and 85% of matter

 $\Omega_{DM} h^2 \sim 0.14 \qquad \Omega_B h^2 \sim 0.022 \qquad 0.0006 < \Omega_v h^2 < 0.0013$ (Planck 2018 : $\Omega_X = \rho_X / 3 M_{PL}^2 H_0^2$, $H_0 = 100h \, km/s/Mpc$, $h \sim 0.7$)

Neutral (does not couple to photon)

Cold (small velocity dispersion at matter radiation equality)

Neutrinos have a large velocity dispersion and erases structures smaller than ~10Mpc and hence are HOT.

Stable or very long lived

The lifetime should be much loner than the age of the universe, **10**¹⁷ sec (detailed constraints depend on the daughter particles)

There are Many Candidates ...

Stability (not exclusively categorized)

Stability by Symmetry

The lightest particle charged under a new symmetry is stable.

New Symmetry \leftrightarrow *New Dark Matter Candidates*

ex) Weakly Interacting Massive Particle (WIMP)

ex) Asymmetry Dark Matter (ADM)

Stability due to very weak coupling

A new particle which couples to other particle very very weakly can have a long lifetime.

ex) Feebly Interacting Massive Particle (FIMP)

ex) Sterile Neutrino Dark Matter

Stability (not exclusively categorized)

Very Light Particle

[Decay Rate] $\propto m_{DM^n}$ (n>0)

→ Very light particles have long lifetimes.

ex) Axion Dark Matter : *m_{DM}* < *O*(1-10) μeV ex) Fuzzy Dark Matter : *m_{DM}* < 10⁻²² eV

Very Heavy Particle

Point-like particles heavier than M_{PL} are Black Holes ! $I_{compton} \sim m_{DM}^{-1} < m_{DM}/M_{PL}^2 \sim Schwartzchild Radius$ They only evaporate by Hawking radiation $T_{BH} \sim M_{PL}^2/m_{DM} \rightarrow \tau_{BH} \sim m_{DM}/T_{BH}^4 R_{BH}^2$ $\tau \gg [age of the universe] \rightarrow m_{DM} \gg 10^{38} \text{ GeV} \sim 10^{-19} M_{\odot}$ ex) Primordial Black Hole (PBH)

✓ Lower Limit (Uncertainty principle $\Delta x \Delta p > 1$)

 $\begin{cases} \Delta p = m_{DM} \Delta v \\ Dwarf Spheroidal Galaxy (dSphs) : \Delta x \sim 1 \, kpc , \Delta v \sim 10 \, km/s \end{cases}$

 $m_{DM} > 10^{-22} eV$

[e.g. Phys.Rev.D91,023519 Martinez-Medina, Robles, Matos]

Lower Limit (Fermi's exclusion principle)

For a fermionic dark matter localized spatially, there is an upper limit on the number of dark matter from the Fermi's exclusion principle.

$$N_{max} = \frac{4\pi}{3} R^3 \int \frac{d^3 p}{(2\pi)^3} \theta(p_F - p) \sim \frac{4\pi}{3} R^3 p_F^3 \qquad p_F \sim m_{DM} (\Delta v^2)^{1/2}$$

For a dwarf galaxy Δv ~ 10 km/s , R ~ 1kpc

$$N = M_{Halo}/m_{DM} < \frac{4\pi}{3} R^3 p_F^3$$

 $\rightarrow m_{DM} > 2keV$ (Tremaine-Gunn Bound)

Upper Limit

DM mass should be much smaller than the mass of the dSphs

 $m_{DM} \ll 10^{10} M_{\odot} \sim 10^{67} GeV$

PBH DM with mDM > $10^{3}M_{\odot}$ is constrained from the CMB constraint caused by accretion onto the PBHs:

 $m_{DM} < 10^3 M_{\odot} \sim 10^{60} GeV$

Model Independent Mass Range

 $10^{-22} eV (2keV) < m_{DM} < 10^{60} GeV$

WIMP

🗸 WIMP abundance

- DM is in thermal equilibrium for $T > m_{DM}$.
- For *m_{DM} < T*, DM is no more created
- DM is still annihilating for *m*_{DM} < *T* for a while...
- DM is also diluted by the cosmic expansion
- DM cannot find each other and stop annihilating at some point
- DM number in comoving volume is frozen

Boltzmann Equation : $\frac{dn_{\rm DM}}{dt} + 3Hn_{\rm DM} = -\langle \sigma v \rangle (n_{\rm DM}^2 - n_{\rm eq}^2) \qquad n_{eq} \propto e^{-m_{DM}/T}$

✓ Number density (per comoving) is fixed when :

DM cannot be produced from thermal bath : $T_F \sim m_{DM}/20$ DM cannot find its partner for annihilation any more : $\langle \sigma v \rangle n_{DM} \langle H \rangle$

$$n_{DM} \sim H / < \sigma v > at T_F$$

✓ WIMP abundance

 $\rho_{DM}/s = m_{DM} n_{DM}/s$

 $\begin{cases} s \propto T^3 \propto a^{-3} & : entropy density \\ n_{DM} \propto a^{-3} \end{cases}$

ρ_{DM} / s is constant in time

```
In the WIMP scenario
```

 $\rho_{DM}/s = m_{DM}H/\langle \sigma v \rangle s \sim 20/\langle \sigma v \rangle M_{PL}$

is constant in time.

 $\Omega_{DM} h^2 \sim 0.1 \leftrightarrow \rho_{DM}/s \sim 10^{-10} \, GeV$

DM abundance (for s-wave annihilation) $\Omega_{DM}h^2 \simeq 0.1 imes \left(rac{10^{-9} \, {
m GeV}^{-2}}{\langle \sigma v
angle}
ight)$

✓ Abundance depends on the DM mass only through $<\sigma v > !$

✓ Typical Annihilation Cross section :

✓ Observed Dark Matter Density can be explained for

 $m_{DM} \sim O(100) GeV - O(1) TeV$ and $\alpha \sim 10^{-2}$

→ WIMP is interrelated to Big Picture of the Beyond the Standard Model !

Lower Limit on WIMP mass

Dark matter freezes-out from the thermal bath at around

 $T_F \sim M_{DM}/O(10)$

for <**ov**> ~ **10**-9**GeV**-2.

Freeze-out should complete before the neutrino decoupling and BBN

 $M_{DM} \gg O(10) MeV$

- ✓ If $m_{DM} < O(1)MeV$, H is larger for a given T, and (n/p) becomes larger → ⁴He abundance is increased compared with Hydrogen abundance.
- ✓ If freeze-out after the neutrino decoupling at *T* ~ *1MeV*, the DM annihilation increases or decreases effective number of the neutrino depending on the branching ratio.

Mass Range of WIMP

✓ Upper Limit on WIMP mass

The heavier the DM is, the larger couplings are required.

$$\langle \sigma v \rangle \sim \frac{\pi \, \alpha^2}{m_{DM^2}} \sim 10^{-9} \text{GeV}^{-2}$$

→ Unitarity Limit on WIMP mass (1990 Griest & Kamionkowski)

Each partial wave cross section is limited from above

$$\sigma_{\ell} v_{
m rel} \leq rac{16\pi(2\ell+1)}{s \, v_{
m rel}}$$
 (spineless case for simplicity)
 $ightarrow M_{DM} < 300 \, TeV$

<u>WIMP mass range : O(10)MeV < M_{WIMP} < 300TeV</u>

Thermal WIMP beyond the unitarity limit ?

✓ What if dark matter annihilates as *extended objets* with geometric cross sections, $\sigma \sim \pi R^2$? (1990 Griest & Kamionkowski)

Asymmetric Dark Matter (ADM)

Asymmetric Dark Matter (ADM)

Baryon-DM coincidence ?

$$\Omega_{DM}:\Omega_b = 5:1$$

close with each other...

ex) neutrino-DM : Ω_{DM} : Ω_v ($\Sigma m_v = 0.06eV$) = 200 : 1

$\Omega_{DM} \propto m_{DM} n_{DM}$

 $\rightarrow m_{DM}$ is independent of $m_{p,n}$, n_{DM} should be adjusted appropriately.

✓ If it were not for Baryogenesis, baryon should have annihilated...

 Ω_{DM} : Ω_b (no-asymmetry) = 1 : 10⁻¹¹ Ω_b (with asymmetry) = 0.02 (η / 10⁻⁹) η = ($n_B - n_{\overline{B}}$)/ n_γ

Baryon-DM coincidence = conspiracy between n_{DM} **and Baryogenesis** ?

Asymmetric Dark Matter (ADM)

If n_{DM} is also given by the baryon asymmetry, i.e. $n_{DM} = \eta x n_{\gamma}$,

$$\Omega_B / \Omega_{DM} = O(1)$$

is naturally explained for $m_{DM} \sim m_{p,n}$ [e.g. 1990 Barr Chivukula, Farhi].

→ Asymmetric Dark Matter

Concrete Set Up [1805.0687 Kamada, Kobayashi, Nakano MI]

✓ Baryogenesis = Leptogenesis

$$\mathcal{L}_{N-\mathrm{SM}} = \frac{1}{2} M_R \bar{N}_R \bar{N}_R + y_N H L \bar{N}_R + \mathrm{h.c.}$$

 $(N_R : right-handed neutrino, M_R > 10^{10} GeV)$

✓ Dark Sector Shares the *B-L* symmetry with the *SM* via

$$\mathcal{L}_{B-L \text{ portal}} = \frac{1}{M_*^n} \mathcal{O}_D \mathcal{O}_{SM} + \text{h.c.}$$

O_{SM}: Neutral (other than B-L) consisting of SM fields. O_{DM}: Neutral (other than B-L) consisting of DM fields.

In ADM model, DM abundance is determined by m_{DM} for a given B asymmetry!

Feebly Interacting Massive Particle (FIMP)

Assume DM has feeble interactions to the thermal bath through dimensionless coupling.

$$m_{DM}Y \sim 10^{-10} \text{GeV} \rightarrow \Omega_{DM} h^2 \sim 0.1 (\lambda / 10^{-13})^2$$

[09 Hall, Jedamzik, March-Russell, West]

Tiny coupling of **O(10**-13) reproduces the observed dark matter density !

Sterile Neutrino Dark Matter

Sterile Neutrino Dark Matter

Add a sterile neutrino v_s neutrino mixing with active neutrinos v_a :

 $L = \mu v_a v_s + m_s v_s v_s / 2 + h.c.$

mixing mass

- $m_s \gg active neutrino masses$
- $\mu \propto$ [Higgs expectation value]

 v_s does not contribute to the active neutrino mass : $\mu^2/m_s \ll m_v$

The sterile neutrinos are mainly produced via the neutrino oscillation

thermal
bath
$$V_a \xrightarrow{\text{oscillation}} \begin{cases} V_a : 1 - P_{a \to s} \\ V_s : P_{a \to s} \end{cases}$$

 $P_{a \rightarrow s} = \sin^2 2\theta_{eff} \sin^2(m_s^2/Tt) \sim (\sin^2 2\theta_{eff})/2$ $\frac{\mu^6}{\mu^6 + m_s^2(\mu^2 - 2V(T, \eta_L)p)^2}$

 $V(T, \mu_L) \sim -100 \, G_{F^2} T^4 p + G_F T^3 \eta_L$

Lepton asymmetry below the EWSB scale

[1807.07938 Boyarsky et. al.]

Sterile Neutrino Dark Matter

✓ The sterile neutrinos are mainly produced via the neutrino oscillation

Axion and scalar field Dark Matter

Scala Field Dark Matter = Coherent oscillation of the scalar field

 $V(\varphi) = m_{DM}^2 \varphi^2/2$

DM energy density is set by the amplitude of the oscillation

 $\boldsymbol{\rho}_{DM} = \boldsymbol{m}_{DM}^2 \, | \, \boldsymbol{\varphi}_0 \, |^2$

where the oscillation starts at a cosmic temperature T_{osc} .

DM Equation of motion

 $\ddot{\boldsymbol{\varphi}} + \boldsymbol{3} \boldsymbol{H} \, \dot{\boldsymbol{\varphi}} = - \, \boldsymbol{m}_{DM^2} \, \boldsymbol{\varphi}$

Hubble friction

DM starts coherent oscillation at

 $H \sim T^2/M_{PL} \sim m_{DM} \rightarrow T_{osc} \sim (m_{DM} M_{PL})^{1/2}$

 $T_{osc} \sim 0.3 \ keV \ (m_{DM}/10^{-22} \ eV)^{1/2}$

/ Initial condition with $\varphi_0 \neq 0$ is set during inflation (misalignment mechanism)

$$\rho_{DM}/s \sim m_{DM}^2 \varphi_0^2 / T_{osc}^3 \sim 10^{-9} \,\mathrm{GeV} \left(\frac{m_{\mathrm{DM}}}{10^{-22} \mathrm{eV}}\right)^{1/2} \left(\frac{\phi_0}{10^{17} \,\mathrm{GeV}}\right)^2$$

 $\Omega_{DM} h^2 \sim 0.1 \iff \varphi_0 \sim 10^{17.5} \text{ GeV} (10^{-22} \text{ eV}/m_{DM})^{1/4}$ Fuzzy Dark Matter [00 Hu, Barkana, Gruzinov]

🗸 <u> Axion Dark Matter</u>

✓ Axion couples to the *θ*-term of QCD to solve the strong CP problem.

✓ The axion is a goldstone boson (like π^{o}) associated with spontaneous breaking of the Peccei-Quinn symmetry, and hence, almost massless !

 $f_a \gg 10^2 \, GeV \sim PQ$ breaking scale

The axion obtains a scalar potential due to the strong dynamics of QCD

Axion mass $m_a \sim rac{f_\pi m_\pi}{f_a}$ $f_{\pi} = 93 MeV, m_{\pi} = 135 MeV$

✓ Axion obtains its potential at T < O(1)GeV.
→ $T_{osc} \sim O(1) GeV$

Typically, the initial amplitude : $a_0 = O(f_a)$.

$$\Omega_a h^2 \simeq 0.2 \times \left(\frac{a_0}{f_a}\right)^2 \left(\frac{f_a}{10^{12} \,\mathrm{GeV}}\right)^{1.19} \left(\frac{\Lambda_{QCD}}{400 \,\mathrm{MeV}}\right) \quad \text{['86 Turner]}$$

Dark Matter Density can be naturally explained for

 $f_a \sim 10^{12} \, \text{GeV}$ ($m_a \sim 10 \, \mu \text{eV}$)

(For a larger f_a , we need $a_0/f_a \ll 1$)

Primordial Black Hole

Primordial Black Hole

The density fluctuations of $\delta = (\rho - \rho_{average})/\rho_{average} = O(1)$ collapse.

When the spatial size of the over-dense region is about the Horizon scale $\sim H^{-1}$

Schwarzschild Radius of : $2 G_N Mass \sim H^{-1} \sim Object Size !$

 $\delta = O(1)$ of a spatial size $\sim H^{-1} \rightarrow$ Black Hole

✓ Primordial Black Hole

✓ Mass of the PBH formed at H ~ T²/M_{PL}

$$M_{BH} \sim 4\pi/3 \, \rho \, H^{-3} \, \sim 0.066 M_{\odot} \left(\frac{\text{GeV}}{T} \right)^2$$

Energy fraction at the formation

https://ned.ipac.caltech.edu/level5/Sept03/Peacock/Peacock6_2.html

Energy fraction at the formation

$$\beta_*(M_*) = \int_{1/3}^1 \frac{d\delta}{\sqrt{2\pi}\bar{\delta}(M_*)} \exp\left(-\frac{\delta^2}{2\bar{\delta}^2(M_*)}\right) \simeq \bar{\delta}(M_*) \exp\left(-\frac{1}{18\bar{\delta}^2(M_*)}\right),$$

Abundance

$$\Omega_{DM} = (1 + z_{production}) \, \beta * \Omega_{\gamma} \sim 10^5 \, \beta * (T/GeV) \sim 10^5 \, \beta * (0.066 M_{\odot}/M_{BH})^{1/2}$$

 $\Omega_{DM} \sim 0.3 \rightarrow \beta * \sim 10^{-6} \rightarrow \delta(M) \sim 0.07$

[For details, see. e.g. 1801.05235, Sasaki, Suyama, Tanaka, Yokoyama]

Primordial Black Hole

At the large scales, the fluctuations are fixed to reproduce the CMB anisotropy δ (CMB, galaxy cluster) ~ 4(Δ T/T)_{CMB} ~ 10⁻⁴ at H⁻¹ ~ CMB, galaxy cluster sizes... We prepare large fluctuation at very small structure scale ! **δ(PBH)** ~ 0.1 at H⁻¹ << CMB, galaxy cluster sizes ['67 Zel'dovich&Novikov, '71 Hawking]

is achieved for flat potential!

	Stability	Abundance	Mass Range
WIMP	Symmetry	Annihilation cross section	10MeV - 300TeV (or Beyond)
ADM	Symmetry	Baryon asymmetry Mass	O(1)GeV
FIMP	Very Weak Coupling	Interaction strength	> O(1)keV
Sterile v	Very Weak Coupling / Approximate Symmetry	Mass / mixing angle Lepton asymmetry	2keV ~ 100keV
Fuzzy DM	Very light & Weak Coupling	Initial amplitude Mass	>10 ⁻²² eV
Aixion DM	Very light & Weak Coupling	Axion decay constant	~ µeV
РВН DM	Heavy Enough Black Hole	Density fluctuation Mass	10 ⁻⁽¹²⁻¹⁴⁾ M⊙

Dark Matter self-Interaction of $\sigma/m \sim barn/GeV \sim cm^2/g$ leaves visible impacts on the structure of (dwarf) galaxies.

Neutrino Signals ?

- The WIMP annihilates into the Standard Model Particles
- The final states of the annihilation often involve lots of neutrinos !

inner chart : 200GeV DM outer chart : 5TeV DM [PPPC 4 DM ID : Cirelli et. al.]

- The WIMP annihilates into the Standard Model Particles
- ✓ The final states of the annihilation often involve lots of neutrinos !
- The neutrino signals require larger detectors compared with other channels.
- The large atmospheric neutrino background compared with e.g. γ-ray signals.
 [(isotropic **γ**-ray)/(atmospheric **v**) ~ 10⁻⁴ at **E** ~ 1TeV]

- The WIMP annihilates into the Standard Model Particles
- ✓ The final states of the annihilation often involve lots of neutrinos !
- ✓ The neutrino signals require larger detectors compared with other channels.
- The large atmospheric neutrino background compared with e.g. γ-ray signals.
 [(isotropic **γ**-ray)/(atompospehric **v**) ~ 10⁻⁴ at **E** ~ 1TeV]

✓ The neutrino signals from the center of the SUN !

✓ Dark Matter are captured by the SUN via scattering with the Nuclei in the SUN.

Accumulated DM annihilates into the SM at the core of the SUN.

 \rightarrow Only **v** can reach the Earth !

✓ Total number of DM in the SUN NDM :

$$\frac{dN_{\rm DM}}{dt} = \Gamma_{\rm capt} - C_{\rm ann} N_{\rm DM}^2$$
$$\longrightarrow N_{DM} = \sqrt{\frac{\Gamma_{\rm capt}}{C_{\rm ann}}} \tanh\left(t\sqrt{\Gamma_{\rm capt}C_{\rm ann}}\right)$$

$$N_{DM} = \sqrt{\frac{\Gamma_{\text{capt}}}{C_{\text{ann}}}} \tanh\left(t\sqrt{\Gamma_{\text{capt}}C_{\text{ann}}}\right)$$

 σ_{SI}, σ_{SD} : spin independent and dependent DM-nucleon cross section

Annihilation rate at the SUN

$$C_{\rm ann} = \langle \sigma v \rangle \left(\frac{G_N M_{\rm DM} \rho_{\odot}}{3 T_{\odot}} \right)^{3/2} \simeq \frac{2 \cdot 10^{-51}}{\rm sec} \left(\frac{\sigma}{1 \, \rm pb} \right) \left(\frac{v}{300 \, \rm km/s} \right) \left(\frac{m_{\rm DM}}{\rm TeV} \right)^{3/2}$$

 $\rho \circ = 151 \ g/cm^3$: the core mass density of the SUN

 $T \circ = 15.5 K$: the core temperature of the SUN

 σ : annihilation cross section of dark matter

✓ 90%CL limits on the Nucelon-DM scattering cross section from the DM annihilation in the SUN [Icecube 1612.05949]

532 days of lifetime, Ev > 100GeV IceCube, Ev > 10GeV DeepCore up-going muon tracks by v_{μ} 's.

ADM models require a large annihilation cross section

Annihilation of the symmetric component of **DM** should be very efficient !

→ This is achieved **DM** is a composite state of dark strong dynamics !

 $\sigma v \sim 4\pi / m_{DM}^2$

Composite ADM model is highly motivated !

The simplest model = Mirror Copy of QCD (= dark QCD) with dark QED.
[1805.0687 Kamada, Kobayashi, Nakano MI]

	$\mathrm{SU}(3)_D$	B-L	$\mathrm{U}(1)_D$
Q_1	3	q_{B-L}	2/3
\bar{Q}_1	$\bar{3}$	$-q_{B-L}$	-2/3
Q_2	3	q_{B-L}	-1/3
\bar{Q}_2	$\overline{3}$	$-q_{B-L}$	1/3

We need at least two-flavors to allow *dark QED* along with B-L.

Dark QCD eventually exhibits confinement at O(1-10) GeV. Dark Matter = Dark protons and Dark neutrons ! $p' \propto Q_1 Q_1 Q_2$, $\bar{p}' \propto \bar{Q}_1 \bar{Q}_1 \bar{Q}_2$, $n' \propto Q_1 Q_2 Q_2$, $\bar{n}' \propto \bar{Q}_1 \bar{Q}_2 \bar{Q}_2$. Dark baryons annihilates into Dark pions $\pi'^0 \propto Q_1 \bar{Q}_1 - Q_2 \bar{Q}_2$, $\pi'^+ \propto Q_1 \bar{Q}_2$, $\pi'^- \propto Q_2 \bar{Q}_1$ Dark pions annihilate/decay into dark photons

 $(A_{SM}/A_{DM}) = 237/(22N_F) \rightarrow m_{DM} = 8 \text{GeV}(2/N_F)$

[1411.4014 Fukuda, Matsumoto, Mukhopadhyay]

✓ Dark Sector Shares *B-L* symmetry with the *SM* via

$$\mathcal{L}_{B-L \text{ portal}} = \frac{1}{M_*^n} \mathcal{O}_D \mathcal{O}_{\text{SM}} + \text{h.c.}$$
$$= \frac{1}{M_*^3} (\bar{Q}_1 \bar{Q}_2 \bar{Q}_2) L H$$
Dark neutron operator

Dark Neutron decays into anti-neutrinos !

[Dark neutron] \rightarrow [dark neutral pion] + \bar{v}

$$\tau \sim 10^{24} \sec\left(\frac{M_*}{10^9 \,\mathrm{GeV}}\right)^6 \left(\frac{10 \,\mathrm{GeV}}{m_{\mathrm{DM}}}\right)^5$$

The main mode is given by $\langle H \rangle = v$.

[1411.4014 Fukuda, Matsumoto, Mukhopadhyay]

Composite ADM leads to a monochromatic anti-neutrino signal !

Constraint on the dark matter lifetime

['09 Covi, Grefe, Ibarra, Tran]

 $\tau_{DM}(DM \rightarrow X + v) > 10^{23} \text{ sec}$ for $m_{DM} \sim 10 \text{GeV}$.

(SK 90%CL constraints on the neutrino flux)

*M**>10^{8-8.5} GeV

~ Lower limits on the right-handed neutrino mass in the leptogenesis (theoretically $M_* < M_R$).

In the ADM models, anti-neutrino signals in O(1)GeV play important role !

Sterile Neutrino

🗸 Sterile Neutrino

Constraints on Axion (No neutrino...)

$$\checkmark \text{ Axion mass: } m_a \sim \frac{f_\pi m_\pi}{f_a} \quad f_\pi = 93 \text{MeV}, m_\pi = 135 \text{MeV}$$

$$\checkmark \text{ Axion coupling to } \gamma \qquad \qquad \mathcal{L} \sim \frac{\alpha}{4\pi} \frac{a}{f_a} F_{\mu\nu} \tilde{F}^{\mu\nu}$$

✓ Axion mixes with π^0 with a mixing angle ~ f_{π}/f_a

Constraint from Horizontal Branch

The axion enhances the energy loss rate of the stars in Horizontal Branch of globular clusters via the Primakoff conversion

 $E_{loss} > 10 g^{-1} erg s^{-1} (T_{HB core} \sim 10 keV)$ [arXiv:1110.2895]

 $f_a > 10^7 GeV$

These constraints are consistent with observed dark matter density which favors $f_a \sim 10^{12} GeV$

$$\Omega_a h^2 \simeq 0.2 \times \left(\frac{a_0}{f_a}\right)^2 \left(\frac{f_a}{10^{12} \,\mathrm{GeV}}\right)^{1.19} \left(\frac{\Lambda_{QCD}}{400 \,\mathrm{MeV}}\right)$$

🛷 Constraints on Primordial Black Hole (No neutrino...)

Allowed mass range of PBH dark matter : $M_{DM} = 10^{-(14-12)} M_{\odot}$

✓ Summary

	Stability	Abundance	Mass Range	v signals ?
WIMP	Symmetry	Annihilation cross section	10MeV - 300TeV (or Beyond)	annihilation in the SUN
ADM	Symmetry	Baryon asymmetry Mass	O(1)GeV	dark neutron decay into v
FIMP	Very Weak Coupling	Interaction strength	> O(1)keV (?)	Model dependent
Sterile v	Very Weak Coupling / Approximate	Mass / mixing angle Lepton asymmetry	2keV - O(100)keV	β-decay spectrum ?
Fuzzy DM	Very light & Weak Coupling	Initial amplitude Mass	> 10 ⁻²² eV	?
Aixion DM	Very light & Weak Coupling	Axion decay constant	~ µeV	?
PBH DM	Heavy Enough Black Hole	Density fluctuation Mass	10 ⁻⁽¹⁴⁻¹²⁾ M⊙	?

🗸 Summary

There are lots of dark matter candidates.

- Neutrino singles are important channels to narrow down the candidates for dark matter !
- With the advent of larger neutrino detectors, the neutrino signals become more important.
- Other channels such as charged cosmic rays, γ-rays, optical lights, radio signals, gravitational waves, and direct detection experiments etc are also important.

Let us unveil the nature of dark matter by using everything in our power!

Back Up

Unitarity Limit on WIMP mass (1990 Griest & Kamionkowski)

(Spineless case for simplicity)

Since we are interested in rather strongly interacting case, we may assume that the reaction rates are dominated by 2-body interactions.

Unitarity : *S*⁺*S* = *1*

$$S = 1 + iT_{el} + iT_R \rightarrow \langle i | T_{el}^{\dagger}T_{el} | i \rangle + \langle i | T_R^{\dagger}T_R | i \rangle = 2 Im \langle i | T_{el} | i \rangle$$

$$\langle f | T | i \rangle = 2\pi^4 \,\delta^4(p_f - p_i) M_{fi}$$

$$\Sigma_f \langle i | T_f^{\dagger}T_f | i \rangle = \sigma_{tot} \,v_{rel} n_1 n_2 \, x \, 2\pi^4 \,\delta^4(0)$$

$$\rightarrow \sigma_{tot} \,v_{rel} = 2 / s \, x \, Im \, M^{(el)}_{ii} \quad (n_1 = n_2 = s^{1/2})$$

Unitarity Limit on WIMP mass (1990 Griest & Kamionkowski)

(Spineless case for simplicity)

Since we are interested in rather strongly interacting case, we may assume that the reaction rates are dominated by 2-body interactions.

Partial wave decomposition :

Unitarity limit on reaction cross section :

 $\sigma_R v_{rel} < 16 \pi \Sigma_l (2l+1) / (s v_{rel})$