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Initial request

“Could you speak on “The impact on Astroparticle
Physics from LIGO-Virgo’s detection of gravitational 
waves?””

Astroparticle…

- cosmic rays?

- neutrinos?

- (very) high-energy gamma rays?

2019/2/18 VHEPA2019 2



Contents

1. Introduction: current LIGO-Virgo results

2. Kilonova AT 2017gfo and r-process cosmic rays

3. Gamma-ray burst GRB 170817A and magnetars

4. Future prospect and summary

VHEPA2019 32019/2/18



1. Introduction: 
current LIGO-
Virgo results
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Era of gravitational-wave astronomy

10 binary black holes and 1 binary neutron stars
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https://ciera.northwestern.edu/gallery/masses-in-the-stellar-graveyard-3/



Mass distribution of black holes

Beginning to be understood to some accuracy
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LIGO&Virgo (2018)

Primary mass

Mass ratio (secondary/primary)



Spin distribution of black holes

𝜒eff = 𝑚1𝜒1,∥ +𝑚2𝜒2,∥ / 𝑚1 +𝑚2

Not likely to be extremely rapidly spinning, but not 

necessarily preferring

non-spinning or

random orientation

Seems premature
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LIGO&Virgo (2018)



On black-hole echoes

It is possible if it was NOT a genuine black hole

e.g., boson stars, gravastars, or firewalls …
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Abedi+ (2017)

Prediction for black holes 
in general relativity

Model of echoes



GW170817
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Neutron star binary coalescence

• Gravitational waves

- test of the theory of gravitation in a non-vacuum

- high-density matter signature: equation of state

• Formation of a hot massive remnant (star/disk)

- central engine of short gamma-ray bursts

• Mass ejection of neutron-rich material

- r-process nucleosynthesis

- radioactively-driven “kilonova/macronova”

VHEPA2019 102019/2/18



Example of the binary merger

A massive rotating star can be left after merger, and 
emit gravitational waves to collapse to a black hole
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log 𝜌 (g/cc)

(old) Movies by Kenta Hotokezaka
Based on Hotokezaka, KK+ (2011)
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Constraint on neutron-star properties

Model-insensitive constraints are obtained, and 
aggressive assumptions derive strong constraints 
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LIGO&Virgo (2019)

Tidal deformability
LIGO&Virgo (2018)



Electromagnetic counterpart

EM radiation accompanies neutron star mergers

localization

- host identification

- cosmological redshift

ejecta properties

- ejection mechanism

- r-process element
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Berger (2014)
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Neutrino upper limit

No coincident event

No model is rejected

(except for on-axis GRBs)
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Albert+ (2017)

Abe+ (2018)

Super-Kamiokande



High-energy gamma ray upper limit

Mostly upper limit for >MeV gamma rays, and 
Fermi/LAT put an upper limit only at late times
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Abdalla+ (2017)



2. Kilonova AT 2017gfo 
and r-process cosmic rays
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r-process nucleosynthesis

Synthesize heavy, neutron-rich elements (Au, Pt…)

r = rapid: neutron capture faster than beta decay

need very dense and

neutron-rich matter

supernova explosions

now seem to fail to

achieve r-process
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Sneden+ (2008)
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Mass ejection from binary mergers

Successful at least for some binary models

how can we confirm this idea?
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Sekiguchi+KK+ (2015)

Wanajo+KK+ (2014)



Kilonova/macronova

Ejected material contain

radioactive r-elements

Their decay heat the ejecta

Thermal photons try to

diffuse from the ejecta

But r-elements efficiently

traps the photon inside

Characteristic “kilonova”!
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Kisaka+ (2015)
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UV/optical/IR transient AT 2017gfo

The host galaxy and redshift are determined
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Utsumi+ (2017)



Hubble’s constant is determined in a novel manner

Gravitational-wave cosmology
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LIGO&Virgo+ (2017)

𝑐𝑧 = 𝑣 = 𝐻0𝐷
z: redshift from the host galaxy
D: distance from gravitational waves

See also
Seto-Kyutoku (2018)

CMB
Supernova

𝐻0 = 70−8
+12 km s−1 Mpc−1
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Hubble tension?

GW-EM can examine this 3.4sigma~9% discrepancy
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Freedman (2017)    adapted from
Beaton+ (2016)
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But caution! Calibration accuracy

Amplitude measurements by LIGO/Virgo have ~5% 
systematic errors … as are the distance errors
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Cahillane+ (2017)

Livingston, similar for Hanford



AT 2017gfo

In general agreement with theoretical models

particularly in NIR

Compared to SNe

- small mass

- high velocity

- high opacity

- no time scale

of the heating
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Tanaka+ (2017)
many other obs.



No indication of ultraheavy elements

A moderate amount of lanthanide is required but 
gold, platinum, etc. are not concretely detected

- it is simply hard to confirm their presence, though
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Tanaka+ (2017)

lanthanide actinide

Pt, Au



Heating source

Some people claim that heavy elements such as 
gold and platinum better explain late-time emission

but

- the prediction is

not very robust

- late bolometric

luminosity is not

very accurate
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Kasliwal+ (2018)



Polarization

Ejecta geometry and atomic distribution could be 
inferred from polarization due to electron scattering

This is possible only if

both light and heavy

r-process elements

exist in the ejecta

No polarization for AT 2017gfo [Covino et al. 2017]

2019/2/18 VHEPA2019 27

©M. Bulla



Possible probe into atomic distribution

~1% polarization is possible for binary neutron stars
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Bulla+KK+ (2018)



Future of the kilonova ejecta

The ejecta with 0.03 − 0.05𝑀⊙ and 0.1 − 0.2𝑐 will 
eventually collide with the interstellar medium

-> a system very similar to supernova remnants

Broadband emission is

expected (mainly radio)

Gamma-rays are possible

for (very) extreme cases

e.g., with magnetars

2019/2/18 VHEPA2019 29

Takami, KK+ (2014)
Not corresponding to AT 2017gfo



Cosmic-ray acceleration?

The velocity of the r-process-enriched ejecta is 
larger by an order of magnitude than supernova’s

If all the r-process elements are produced in 
mergers, they must be born with two order-of-
magnitude larger kinetic energy (per mass) than 
elements from the supernova explosion e.g., Fe

Then - r-process cosmic rays could be very intense 
as far as the reverse-shock acceleration is efficient
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Observed cosmic-ray composition

No selective r-process enhancement is observed

“solar composition”

Enhancement for

- refractory elements

that tend to form dusts

- all the heavy elements

(or for large A/Q ?)
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Ellison+ (1997)

estimated
abundance
ratio at
the source



Limit on acceleration efficiency

Particle acceleration and emission will be inefficient 
in the reverse shock of the kilonova ejecta
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Kyutoku-Ioka (2016)



3. Gamma-ray burst 
GRB 170817A and 

magnetars
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Short gamma-ray burst

About 1051erg/s explosions

- the sun is ~4 × 1033erg/s

Long-soft GRB: ≥ 2s

deaths of massive stars

Short-hard: ≤ 2s

neutron star binary merger?

rigorous confirmation needs

gravitational waves
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http://www.daviddarling.info/images/gamma-ray_bursts.jpg
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GRB 170817A
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© LIGO/Virgo; Fermi; INTEGRAL; NASA/DOE; NSF; EGO; ESA.



The difference of speeds in GW/EM

Gravitational waves and gamma rays arrive 
separated only by ~1.7s from ~40Mpc=4x10^15s

Timing difference Δ𝑡 = 𝐷/𝑣GW − 𝐷/𝑣EM
renders the velocity difference Δ𝑣 ≔ 𝑣GW − 𝑣EM

−3 × 10−15 ≤
Δ𝑣

𝑣EM
≤ 7 × 10−16

if the difference at the source is [0:10]s (model!)

- multiple events will alleviate model dependence
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Dispersion relation

Propagation of electromagnetic waves (in a suitable 
gauge) is governed by the spacetime metric as

𝜂𝜇𝜈𝜕𝜇𝜕𝜈𝐴𝛼 = 0

Gravitational waves ℎ𝛼𝛽 must obey the same causal 

structure, so that
ො𝑔𝜇𝜈𝜕𝜇𝜕𝜈ℎ𝛼𝛽 = 0

with ො𝑔𝜇𝜈 = Ω2𝜂𝜇𝜈, no correction such as ∇𝜇𝜙∇𝜈𝜙

This is not usually assuring for modified theory of 
gravity with higher derivatives of scalar fields
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Constraint on modified gravity

Various theories are now regarded as rejected
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Ezquiaga-Zumalacarregui (2017)



Scenario confirmation

Apparently, short gamma-ray burst (but not hard)

-> Binary neutron stars drive some short GRBs!
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Goldstein+ (2017)

Duration of emission

Hard spectrum

Soft spectrum
2019/2/18



The closest short gamma-ray burst

Among the short GRBs with measured redshifts
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Fong+ (2017)

𝐷 = 40−14
+8 Mpc from

gravitational waves (90%)
consistent with 𝑧 ≈ 0.01



Underluminous…

VHEPA2019 41

Because this event was quite nearby,
the normal apparent luminosity
means the intrinsically low luminosity

Detection threshold vs redshift

(isotropic-equivalent) luminosity of gamma-ray emission
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LIGO&Virgo, Fermi, INTEGRAL (2017)



Brightening of the afterglow

An off-axis jet is a good candidate, but an ultra-
relativistic top-hat jet is rejected (for any angle)
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Mooley+ (2018)

A top-hat jet
must evolve rapidly



Structured jet

The jet of gamma-ray bursts is not very simple but 
is associated with a non-trivial angular structure
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Lazzati+ (2018)



Superluminal motion

Radio VLBI resolved material moving with Γ ≈ 4

Evidence of a jet! But Γ > 30 is not yet confirmed
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Apparently
𝑣 ≈ 4𝑐

Mooley+ (2018)



Peak and decline of the luminosity

Decline after the peak is not very slow: jet-like

This does not fit with quasispherical cocoon models
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Troja+ (2018)



Late-time X-ray flare?

Was the remnant a magnetar w/ ~160day lifetime? 
Very important to understand the central engine
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Piro+ (2019)

Piro+ (2019)



Magnetic-field amplification

Hydrodynamic and magneto-hydrodynamic 
instabilities amplify the magnetic field to 10^17G

- Kelvin-Helmholtz instability at the contact surface

- winding and magneto-rotational instability

2019/2/18 VHEPA2019 47

Kiuchi, KK+ (2015)



GeV-TeV gamma-ray emission

A central engine or late-time GRB activity may give 
us a chance of detecting ~100GeV gamma rays

magnetar case                       on-axis GRB case
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thick: 1GeV, thin: 100GeV

Murase+ (2018)

100GeV



Dark age of binary neutron star merger

What is ongoing in

the 1.7s delay between

gravitational waves

and gamma rays?

- black hole formation?

- magnetar?

Only neutrinos could be

possible messengers
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Waiting time for MeV neutrinos

Once (=one neutrino!)

in 50-80 years with

Mt-class detectors

such as Hyper-K

If the remnant does not

collapse to a black hole

<-> 1 in 30-100 years of

Galactic supernovae
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Kyutoku-Kashiyama (2018)



Struggle with the background

Neutrinos from binaries

are easily embedded in

supernova backgrounds

and other sources

Our message:

analyze only ~1s from

the merger time (GW)
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Kyutoku-Kashiyama (2018)



Possible neutrino mass measurement

By using the time delay of neutrinos from GWs

𝑚𝜈<44meV
Δ𝑡

0.1s

1/2
𝐸

10MeV

𝐷

100Mpc

−1

• Δ𝑚21
2 = 8 × 10−5eV2~ 9meV 2

• Δ𝑚31
2 = 2.4 × 10−3eV2~ 50meV 2

• ∑𝑚 < 0.1 − 0.2eV from cosmology

KATRIN is aiming at directly measuring 200meV

- but this comparison is not contemporaneous!
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4. Future prospect 
and summary
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Future observation

LIGO&Virgo resume observations from early 2019

KAGRA would also join the observation in 2019
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Observable range of binary neutron stars: 100Mpc=300M light years

LIGO&Virgo&KAGRA (2017)
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Polarization as a test of gravity

KAGRA will be important to

investigate whether

gravitational waves are really

transverse as GR predicts

The number of available

detectors determines

the number of constraints
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Will (2014)
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Further gravitational-wave sources

Transient Persistent

Known 
waveform

inspiral: compact binaries
BH-BH, BH-NS, NS-NS …

continuous:
deformed neutron stars

Unknown 
waveform

burst:
supernova
cosmic string
…

unknown unknown?

stochastic: superposition 
of weak sources, inflation,
phase transition…
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©NASA.Goddard SFC

BICEP2 (2014)

Kyutoku+ (2015)

Takiwaki+ (2014)



Multi-wavelength GW astronomy

May not be near, but the foreseeable future
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http://rhcole.com/apps/GWplotter/

Current
observation



LISA

Space-borne gravitational-wave detector operated 
by ESA/NASA, sensitive at ~mHz bands
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Amaro-Seoane+ (2017)



Supermassive black hole

Galaxies often host black holes with 106 − 109𝑀⊙

at their centers: How are they formed?

How did they affect evolution of galaxies/universe?
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https://www.nature.com/news/galaxy-formation-the-new-milky-way-1.11517

From Wikipedia



Toward all-messenger astronomy

Coincident neutrino and gamma-ray detections 
from a supermassive black hole have been reported

GW + neutrino + electromagnetc?
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IceCube collaboration et al. (2018)



Summary

• Many gravitational-wave events are reported.

• A kilonova AT 2017gfo indicates the formation of 
lanthanides, but the presence of very heavy 
element such as Au and Pt is still debated.

• The reverse shock may be a poor accelerator.

• A short GRB 170817A indicates that the jet has a 
non-trivial angular structure.

• The central engine could be a magnetar, and it 
may be checked by gamma rays or neutrinos.
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Appendix
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Encoded physics
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(H/S)
MNS

Hotokezaka, KK+ (2011)

Early inspiral: mass, spins…

Late inspiral and merger:
tidal deformation, NS EOS

Remnant massive NS:
extreme temperature/density

Ringdown: GR
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Merger dynamics of NS-NS
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Massive, 
hot NS

Large-mass disk

𝑀total < 𝑀crit
𝑀total > 𝑀crit:

prompt collapse
(unlikely)

Small-mass disk

Hypermassive:
~100ms

Small-mass disk?

Stable NS

Supramassive:
𝑀total < 𝑀rot,max

~spin-down time

𝑀total < 𝑀max

[See e.g., Hotokezaka+KK+ (2013)]
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Kilonova/macronova characteristics

For spherical ejecta (Li-Paczynski 1998, also Arnett 1982)

The peak luminosity: 𝐿peak ∝ 𝑓𝜅−1/2𝑀1/2𝑣1/2

The peak time           : 𝑡peak ∝ 𝜅1/2𝑀1/2𝑣−1/2

Heating efficiency 𝑓 and opacity 𝜅 – microphysics

particularly, r-process elements have high opacity

Ejecta mass 𝑀 and ejecta velocity 𝑣 – macrophysics

small mass and high velocity (vs supernovae)
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Too many lines of lanthanides

A bunch of energy levels -> complex line structures

-> very frequent interaction  -> very high opacity

Especially, lanthanides are very opaque to photons
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Kasen+ (2013)
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Opacity is not simple
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Wavelength dependent: low at infrared

Epoch dependent: low at a hot and ionized state

Composition dependent: low at lanthanide-free

©M. Tanaka

1day after merger

3day
after
merger



Uniqueness as an optical transient

Consistent (only) with the kilonova

featureless red spectrum

rapid dimming and reddening
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Black (SSS17a=AT 2017gfo): this event 
Colored: other known transients
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bright

dim

red

blue
redblue



Rapid reddening of the spectrum

features are consistent w/

r-process element models
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Chornock+ (2017)

McCully+ (2017)
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Two component?

Too bright at earlier epochs

Early lanthanide-free +

late lanthanide is very likely
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lanthanide actinide

Tanaka+ (2017)

Tanaka+ (2017)
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lanthanide-free
intermediate
lanthanide-rich



Why two components?

The early spectrum is blue and featureless

The late spectrum is red and has a broad peak
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Kasen+ (2017)
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Theoretical interpretation

Likely fast light r-elements + slow heavy r-elements

- the latter may be dynamical ejecta or disk wind

- how the former is generated? under debate
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Kasen+ (2017) Shibata+KK+ (2017)



Mutual interaction may be essential

Another possibility is reprocessing of the light from 
a blue slow component by a red fast component 
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Kawaguchi+ (2018)



How to distinguish models?

Two-component? Dynamical or postmerger?

One (e.g., Waxman+ 2017)? Three (e.g., Villar et al. 2017)?

• Spatial resolution by radio observations

• Determine the postmerger remnant: BH vs NS

- GeV-TeV gamma rays could do (Murase+ 217)

More detections seems necessary anyway

• Angular dependence of emission

• Polarization (ND for this event: Covino+ 2017)
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Reverse shock

R-process elements reside in the ejecta region
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Truelove-Mckee (1999)

Fluid
velocity

Circumstellar medium
~solar composition

Ejecta
~r-process elements



Observed reverse-shock acceleration

X-rays from Cas A reveal reverse-shock emission

magnetic-field amplification & electron acceleration
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Helder-Vink (2008)

Helder-Vink (2008)



Caveat: isotopic contamination

We do not distinguish r-/s-process isotopes so far
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A-Z:
#neutrons

Z:
#protons Sneden+ (2008)
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Localization

LIGO-Virgo three detectors did a good job this time
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Earth

Interplanetary network
by Fermi and INTEGRAL

LIGO-Virgo skymap

Fermi/GBM
(n1,n2,n5 detectors)

Goldstein+ (2017)



South Atlantic Anomaly

Sensitivity is not good, Fermi/LAT was not available
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Ajello+ (2018)



Distance-inclination degeneracy

Δ𝚤 < 5∘ is possible with Virgo or KAGRA (Arun+ 2014)
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PDF from LVC: 𝚤 < 55∘

𝚤 < 28∘ if we
adopt a distance

from NGC 4993

: proxy of the inverse distance here

LVC+ (2017)
see also Mandel (2017)



Future prospect for the inclination

A distance measurement (3D localized) improves 
the localization accuracy by a factor of 2-3

L: LIGO Livingston, H: LIGO Hanford, V: Virgo

K: KAGRA, I: LIGO India      BH-NS (NS-NS)@200Mpc
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Arun+ (2014)



Two component prompt emission

Main peak: 𝐸𝑝 ≈ 185 keV

Soft tail: 𝑘𝐵𝑇 ≈ 10 keV

not necessarily “compact”

Γ > 2 − 3 is sufficient
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Main peak:
power law + exp. cutoff

Soft tail:
blackbody

10-300keV

Goldstein+
(2017)



Off-axis? early X/radio afterglow

As of Oct 16, on-axis short GRBs were disfavored 
and an off-axis jet offered a natural interpretation
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Troja+ (2017)

2019/2/18

previous SGRB
likely on-axis

GRB 170817A

Murguia-Berthier+ (2017)
Multiband

explanation



Late rise due to relativistic beaming

Emission from relativistically moving material is 
concentrated (beamed) within an angle of 𝜃 ∼ 1/Γ
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Observable throughout
𝜃 ∼ 1/Γ

Jet w/ Γ Usual GRB observer

Off-axis observer
Observable only after
the jet is decelerated to
Γ < 1/𝜃obs

Emission mechanism:
nonthermal synchrotron



Cocoon with a chocked jet?

When a jet interact w/ ejecta (macronova/kilonova), 
the energy is dissipated and hot material breaks out
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Mooley+ (2017)

Main peak
Soft tail

Prompt
emission

Gottlieb+ (2017)



Case of a magnetized jet

Similar emission may be expected even if the 
central engine was a massive remnant neutron star
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Bromberg+ (2017)



Seemingly satisfactory

Blue kilonova/macronova may also be explained

If so, GRB 170817A was not a typical short GRB
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Kasliwal+ (2017)
UV/optical/IR 

Mooley+ (2018)



Prerequisite: very fast ejecta

This cocoon model requires ∼ 10−7 − 10−6𝑀⊙

with > 0.5 − 0.6𝑐 for successful prompt emission

• dynamical mass ejection? (e.g., Hotokezaka+KK+ 2013)

It is unclear whether such a fast component can be 
ejected particularly toward the polar direction

• merger shock breakout from

neutron stars? (Kyutoku+ 2014)

Seriously? This model itself might

also explain the X/radio emission
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Multi-wavelength observation

X-rays also brightened after Sun’s 100day constraint
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2.34 day 9 day

15.39 day 110 day

Margutti+ (2018)

X-ray

radio



Neutrino emission

As bright as supernova explosions

Reflect equations of state

Directly detectable

neutrinos are extremely

rare, but they could

affect various aspects
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Neutron star

Remnant of massive stars

(mass range is uncertain)

Mostly consists of neutrons

1.4 solar mass, ~10km

The density is higher than

nuclear saturation values

“a huge nucleus”

Arena for nuclear physics
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Lattimer (2014)
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Neutron-star matter

Cold, high-density, highly neutron-rich matter

also could be magnetized up to ~1017G 1013T
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Fukushima-Hatsuda (2011)

~density
2019/2/18



Neutron star equation of state

We want to know the realistic equation of state, 
that uniquely determines the mass-radius relation
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Equation of state: Nuclear physics Mass-Radius relation: Astrophysics

Özel-Freire
(2016)

Özel-Freire (2016)
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Note: not need to observe the radius, and other quantities may be fine



Maximum mass of neutron stars

Put a robust constraint on equation-of-state models

Generally,

emergence of

exotic particles

tend to reduce the

maximum mass

… not so preferred
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Demorest+ (2010), see also Antoniadis+ (2013)

observed maximum
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Maximum mass from GW170817

Upper limits are proposed based on assumptions

• Optical emission rejects magnetar models

Margalit-Metzger: ≤ 2.17𝑀⊙

Shibata+KK+: 2.15 − 2.25𝑀⊙

• A GRB jet launch calls for gravitational collapse

Rezzolla+, Ruiz+: ≤ 2.16𝑀⊙

I do not think any argument is strongly convincing, 
but similar values are inferred anyway

2019/2/18 VHEPA2019 99



Quadrupolar tidal deformability

Leading-order finite-size effect on orbital evolution 
(strongly correlated with the neutron-star radius)

Λ = 𝐺𝜆
𝑐2

𝐺𝑀

5

=
2

3
𝑘

𝑐2𝑅

𝐺𝑀

5

∝ 𝑅5

𝑘~0.1: (second/electric) tidal Love number
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deformed
External 

field𝒬𝑖𝑗 = −𝜆ℰ𝑖𝑗

𝒬𝑖𝑗 ≡ න𝜌 𝑥𝑖𝑥𝑗 −
1

3
𝑥2𝛿𝑖𝑗 𝑑3𝑥 ℰ𝑖𝑗 ≡

𝜕2Φext

𝜕𝑥𝑖𝜕𝑥𝑗
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𝑀 − Λ relation
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𝑅 1.35𝑀⊙ , Λ 1.35𝑀⊙

13.7km, 1211
13.0km, 863

12.3km, 607
11.6km, 422

11.0km, 289



Definition of parameters

Total mass 𝑀 = 𝑚1 +𝑚2

Reduced mass 𝜇 = 𝑚1𝑚2/𝑀

Chirp mass ℳ𝑐 = 𝜇3/5𝑀2/5

Symmetric mass ratio 𝜂 = 𝜇/𝑀

Binary tidal deformability (𝑚1 ≤ 𝑚2)

෨Λ =
8

13
[ 1 + 7𝜂 − 31𝜂2 Λ1 + Λ2

− 1 − 4𝜂 1 + 9𝜂 − 11𝜂2 Λ1 − Λ2 ]
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Tight correlation of ෩Λ −ℳ𝑐

GW-measured ෨Λ is

tightly correlated

w/ the chirp mass

Λ 𝑀 = 21/5ℳ𝑐 is

effectively constrained

>13km is not favored

2019/2/18 VHEPA2019 103

Mass ratio
variation

GW170817:
ℳ𝑐 = 1.188𝑀⊙


