Multi-Messenger Connection of High-Energy Cosmic Particles

Motivation: Cosmic Rays – A Century Old Puzzle

$$\frac{dN_{\rm CR}}{dE} \propto E^{-s_{\rm CR}}$$

Open problems

- How is the spectrum formed? (ex. transition to extragalactic)

How are CRs accelerated?
 (ex. Fermi mechanism: s_{CR}~2)

- How do CRs propagate? (diffusion, rectilinear, or?)

"What is the origin?" WANTED!

LOOKING FOR

UHECR Source Candidates: Cosmic Monsters

The strongest mag. fields B ~ 10¹⁵ G

The brightest explosions $L_{\gamma} \sim 10^{52}$ erg/s

The most massive black holes M_{BH}~10⁸⁻⁹M_{sun}

The largest gravitational object R_{vir}~ a few Mpc

cf. B_{sun} ~1 G, L_{sun} ~4x10³³ erg/s, M_{sun} ~2x10³³ g, R_{sun} ~7x10¹⁰ cm

UHECR Source Candidates: Cosmic Monsters

Era of Multi-Messenger Astroparticle Physics

Gamma Rays Fermi, HAWC, HESS, MAGIC, VERITAS, CTA etc.

Neutrinos IceCube, KM3Net Super-K etc.

Cosmic Rays PAMELA, AMS-02 Auger, TA etc.

Gravitational Waves LIGO, Virgo, KAGRA

Multi-Messenger Cosmic Particle Backgrounds

Energy generation rates are all comparable to a few x 10⁴³ erg Mpc⁻³ yr⁻¹

Extragalactic Gamma-Ray Sky: Dominated by Blazars

UHECR Sky: Unknown (but Hint?)

- No established source yet
- Tentative correlation? starbursts: ~4σ AGN: ~3σ TA hotspot: ~3σ
 - Dipole anisotropy established -> supporting extragalactic (Auger 17 Science)
- Spectrum: suppression at ~40 EeV can be explained by interactions with CMB during the propagation OR maximum energy at the sources
- Composition: heavier nuclei beyond the ankle?

Neutrino Sky: Latest Updates

Neutrino Sky: Latest Updates

- Two double bang candidates (not settled yet) could be CC interaction by ν_{τ}

Double cascade Event #1

Double cascade Event #2

Neutrino Sky: Latest Updates

- 5.9 PeV event (deposited) in PEPE (PeV Energy Partially-contained Events)
- Could be a Glashow event at E=6.3 PeV?

Sources?

~3000 sources (3FGL)

HESE 4yr with $E_{dep} > 100$ TeV (green) / Classical $v_{\mu} + \bar{v}_{\mu}$ 6yr with $E_{\mu} > 200$ TeV (red)

Constraints from Non-Detection of Neutrino Clustering

Non-detection of "multiplet" neutrino sources give limits on the number density Source-identification is possible with Gen2 for known astrophysical candidates

Multi-Messenger Cosmic Particle Backgrounds

Energy generation rates are all comparable to a few x 10⁴³ erg Mpc⁻³ yr⁻¹

Astrophysical Extragalactic Scenarios

$E_v \sim 0.04 E_p$: PeV neutrino $\Leftrightarrow 20-30 \text{ PeV CR}$ nucleon energy

Cosmic-ray Accelerators (ex. UHECR candidate sources)

Cosmic-ray Reservoirs

Fate of High-Energy Gamma Rays

$$\pi^0 \rightarrow \gamma + \gamma$$

 $p + \gamma \rightarrow N\pi + X \qquad \pi^{\pm}:\pi^{0} \sim 1:1 \rightarrow \mathbf{E}_{\gamma}^{2} \Phi_{\gamma} \sim (4/3) \mathbf{E}_{\nu}^{2} \Phi_{\nu}$ $p + p \rightarrow N\pi + X \qquad \pi^{\pm}:\pi^{0} \sim 2:1 \rightarrow \mathbf{E}_{\gamma}^{2} \Phi_{\gamma} \sim (2/3) \mathbf{E}_{\nu}^{2} \Phi_{\nu}$

>TeV γ rays interact with CMB & extragalactic background light (EBL)

$$\gamma + \gamma_{\text{CMB/EBL}} \rightarrow e^+ + e^-$$
 ex. $\lambda_{\gamma\gamma}$ (TeV) ~ 300 Mpc
 $\lambda_{\gamma\gamma}$ (PeV) ~ 10 kpc ~ distance to Gal. Center

$$\begin{array}{c} \text{cosmic photon bkg.} \quad \text{cosmic photon bkg.} \\ \text{HE } \gamma \quad \lambda_{\gamma\gamma} \quad e \\ \hline \\ \text{LE } \gamma \quad \frac{\partial N_{\gamma}}{\partial x} = -N_{\gamma}R_{\gamma\gamma} + \frac{\partial N_{\gamma}^{\text{IC}}}{\partial x} + \frac{\partial N_{\gamma}^{\text{syn}}}{\partial x} - \frac{\partial}{\partial E}[P_{\text{ad}}N_{\gamma}] + Q_{\gamma}^{\text{inj}}, \\ \hline \\ \frac{\partial N_{e}}{\partial x} = \frac{\partial N_{e}^{\gamma\gamma}}{\partial x} - N_{e}R_{\text{IC}} + \frac{\partial N_{e}^{\text{IC}}}{\partial x} - \frac{\partial}{\partial E}[(P_{\text{syn}} + P_{\text{ad}})N_{e}] + Q_{e}^{\text{inj}}, \end{array}$$

Generic Neutrino and Gamma-Ray Connection

• Generic power-law spectrum $\epsilon Q_{\epsilon} \propto \epsilon^{2-s}$, transparent to GeV-TeV γ

• $s_v < 2.1 - 2.2$ (for extragal.); insensitive to evolution & EBL models

- contribution to diffuse sub-TeV γ: >30%(SFR evol.)-40% (no evol.)
- $s_v < 2.0$ for nearly isotropic Galactic emission (e.g., Galactic halo)

Astrophysical Extragalactic Scenarios

$E_v \sim 0.04 E_p$: PeV neutrino \Leftrightarrow 20-30 PeV CR nucleon energy

Cosmic-ray Accelerators (ex. UHECR candidate sources)

Cosmic-ray Reservoirs

Photomeson Production in AGN Jets KM, Inoue & Dermer 14 dust torus $\sim \sim \sim$ L'L (IR) accretion disk (UV, X) $\sim \sim \sim$ cosmic ray blazar! broadline region blazar zone (opt, UV) (broadband) $\sim \sim \sim$ $E'^b_{\ \nu} \approx 0.05 E'^b_{\ p} \simeq 80 \text{ PeV } \Gamma^2_1 (E'_s / 10 \text{ eV})^{-1}$ inner jet photons $E'^{b}_{\nu} \approx 0.05 (0.5 m_{p} c^{2} \bar{\epsilon}_{\Delta} / E'_{\rm BL}) \simeq 0.78 \text{ PeV}$ **BLR** photons $p\gamma \rightarrow \Delta^{+} \rightarrow \pi + N$ $E'^{b}_{\nu} \simeq 0.066 \text{ EeV}(T_{\text{IR}}/500 \text{ K})^{-1}$ **IR** dust photons

Blazars as Powerful EeV v Sources

Blazar (radio galaxy) = BL Lacs (FR-I) + FSRQs (FR-II)

- FSRQs: efficient v production, dominant in the neutrino sky
- BL Lacs: inefficient ν production, dominant in the UHECR sky as FR-I

- Unique v spectrum: PeV v by BLR photons & EeV v by dust IR photons

- Only bright FSRQs are dominant -> promising source identification
- Consistent w. IceCube (1-10% at PeV), UHECRs are isotropized at kpc-Mpc

HE Neutrinos from AGN Jets: Constraints

Standard simplest jet models as UHECR accelerators: many constraints... - Blazars: power-law CR spectra & known SEDs→ hard spectral shape

HE Neutrinos from AGN Jets: Constraints

Standard simplest jet models as UHECR accelerators: many constraints...

- Blazars: power-law CR spectra & known SEDs→ hard spectral shape
 IceCube 9-yr EHE analyses give a limit of <10⁻⁸ GeV cm⁻² s⁻¹ sr⁻¹ at 10 PeV
- Give up IceCube explanation OR give up UHECRs (ex. Dermer, KM & Inoue 14

AGN Cores as Neutrino Factories

Seyfert/Quasar AGN

standard accretion disk -> collisional CR acceleration is inefficient

Low-luminosity AGN

accretion disk is "radiatively inefficient" collisionless -> promising CR acceleration supported by simulations & observations

Astrophysical Extragalactic Scenarios

$E_v \sim 0.04 E_p$: PeV neutrino $\Leftrightarrow 20-30$ PeV CR nucleon energy

Cosmic-ray Accelerators (ex. UHECR candidate sources)

(exceptions: AGN cores, choked jets)

PeV

E,

0.1/TeV

Starburst galaxy Galaxy group/cluster high star-formation $p + p \rightarrow N\pi + X$ $\Phi \propto E^{-s}$ $E^2 \Phi$ gas density & CR source size ν S_v∼S_{CR} 0.1 TeV PeV E,

Cosmic-ray Reservoirs

Cosmic-Ray Reservoirs

Neutrino-Gamma-UHECR Connection?

Grand-unification of neutrinos, gamma rays & UHECRs simple hard CR spectrum w. s~2 can fit all diffuse fluxes

- Explain >0.1 PeV v data with a few PeV break (theoretically expected)
- Escaping CRs may contribute to the observed UHECR flux

Neutrino-Gamma-UHECR Connection?

Grand-unification of neutrinos, gamma rays & UHECRs simple hard CR spectrum w. s~2 can fit all diffuse fluxes

- Explain >0.1 PeV v data with a few PeV break (theoretically expected)
- Escaping CRs may contribute to the observed UHECR flux

Ex. AGN Embedded in Galaxy Clusters/Groups

- AGN as "UHECR" accelerators
- confinement in cocoons & clusters
- escaping CR nuclei: harder than CR protons
- smooth transition from source v to cosmogenic v

Unifying >0.1 PeV v, sub-TeV γ , and UHECRs (including proton ankle at 100 PeV & composition)

Fang & KM 18 Nature Physics

Ex. Star-Forming Galaxies w. AGN

Starbursts can potentially explain ν and γ simultaneously but...

- 1. CR accelerators are more powerful than supernovae (beyond the knee)
- 2. Diffusion should be much slower than expected from that of our Galaxy
- 3. Tension with Fermi and IACT data (normalization & photon index)

1. Disk-driven winds are likely to accelerate CRs up to ~10-100 PeV

- 2. Diffusion coefficients can be smaller from those of star-forming galaxies
- 3. Consistent w. Fermi limits and CR spectra can be harder

Blazar Flares?

Blazar Flares?

Good chances to detect them
even if subdominant in the diffuse v sky
1. Observational reason: temporal & spatial coincidence
2. Theoretical reason "enhanced" jet power + target photons

(see e.g., KM & Waxman 16, KM et al.18)

IceCube 170922A & TXS 0506+056

IceCube 2018 Science

- IceCube EHE alert pipeline
- Automatic public alert (through AMON/GCN)
- Kanata observations of blazars
 -> Fermi-LAT (Tanaka et al.)
 ATel #10791 (Sep/28/17)
- X-ray observations reported by members of Penn State people
- Swift (Keivani et al.)
 GCN #21930, ATel #10942
 NuSTAR (Fox et al.)
 ATel #10861

TXS 0506+056 SED Modeling: Hadronic

TXS 0506+056 SED Modeling: Leptonic

2014-2015 Neutrino Flare

Single-zone models predict F_x~10⁻¹⁰ erg/cm²/s by cascades

(violating Swift-BAT limit)

KM, Oikinomou & Petropoulou 18 ApJ

confirmed by numerical studies: Rodrigues et al. 18 Reimer et al. 18 Petropoulou, KM et al. in prep.

No simple picture

Petropoulou, KM+ in prep.

Multi-Zone Picture?

Problems

Severe X-ray constraints on the maximum neutrino flux
 Severe CR power requirement for low v production efficiency

Relaxing X-ray suppression?

- 1. Anisotropic cascades (isotropization & time delay)
- 2. Avoiding Bethe-Heitler (for neutron beams)
- 3. Scattering ($N_H > 10^{25} \text{ cm}^{-2}$)

Efficient v production?

- 1. External radiation fields
- 2. pp interactions w. clouds

see

KM, Oikinomou & Petropoulou 18 ApJ

Need more information: X-ray/ γ -ray monitoring, X-ray/ γ -ray polarization

Summary

$\gamma\text{-ray flux} \thicksim \nu$ flux \thicksim CR flux

multi-messenger limits are now critical for CR and DM models

Cosmic-ray sources (above 100 TeV)?

CR accelerators: blazars are likely to be subdominant at sub-PeV energies but they can be dominant in the 10-100 PeV energy range AGN core models are viable given that CRs are accelerated CR reservoirs: s<2.1-2.2 & significant contribution to Fermi γ-ray bkg. cosmic particle unification is possible with s~2

Blazar flares?

TXS 0506+056 flares: no simple convincing picture – stay tuned....

BSM?

decaying dark matter: constrained by Fermi-LAT and CR experiments various possibilities are discussed (neutrino decay, pseudo-Dirac neutrinos, neutrino-neutrino self-interactions, neutrino-dark matter interactions, Lorentz invariance violation)

BSM Explanations?

BSM Signatures in Neutrino Spectra

Decaying dark matter ("dominant" in terms of the number of papers)

 $E_{\nu}^{2}\Phi_{\nu} = E_{\nu}^{2}\Phi_{\nu}^{\mathrm{EG}} + E_{\nu}^{2}\Phi_{\nu}^{\mathrm{G}} \sim 4 \times 10^{-8} \,\,\mathrm{GeV}\,\mathrm{cm}^{-2}\,\mathrm{s}^{-1}\,\mathrm{sr}^{-1} \,\left[\frac{1 + 1.6(\mathcal{J}_{\Omega}/2)}{2.6}\right]\tau_{\mathrm{dm},27.5}^{-1}(\mathcal{R}_{\nu}/15)^{-1}$

- Neutrino lines:

Feldstein et al. 13, Dudas, Mambrini & Olive 15, Roland et al. 15, Aisati et al. 15, Aisati et al. 16

- Portal type, R-parity violating gravitino, RH $\nu,$ glueball DM etc.

Feldstein, Kusenko, Matsumoto & Yanagida 13, Esmaili & Serpico 14, Bai, Lu & Salvado 13, Bhattacharya, Reno & Sarcevic 14, Higaki, Kitano & Sato 14, Esmaili, Kang & Serpico 14, Rott, Kohri & Park 15, Fong et al. 15, KM et al. 15, Boucenna et al. 15, Ko & Tang 15, Chianese et al. 16, Bhupal Dev et al. 16, Bari, Ludl & Palomares-Ruiz 16, Borah et al. 17, Hiroshima, KM et al. 17 etc.

Other models

- Annihilation in low-velocity sub-halos: Zavala 14
- Early time particle decay: Ema, Jinno & Moroi 14, Anchordoqui et al. 15, Ema & Moroi 16
- Boosted dark matter: Bhattacharya, Gandi & Gupta 15, Kopp, Liu & Wang 15, Bhattacharya et al. 17

Secret interactions

Ioka & KM 14, Ng & Beacom 14, Ibe & Kaneta 14, Blum, Hook & KM 14, Cherry, Friedland & Shoemaker 14, Araki et al. 15, DiFranzo & Hooper 15, Kamada & Yu 15, Araki et al. 16, Shoemaker & KM 16, Yin 17

Neutrino decay

Pagliaroli et al. 15, Shoemaker & KM 16, Bustamante, Beacom & KM 17, Denton & Tamborra 18

BSM Explanations for Neutrino Spectra?

Multi-Messenger Emission of Decaying Dark Matter

- Galactic: $\gamma \rightarrow \text{direct}$ (w. some attenuation), $e^{\pm} \rightarrow \text{sync.} + \text{inv.}$ Compton
- Extragalactic \rightarrow EM cascades during cosmological propagation

strong tension with existing Fermi (sub-TeV γ) and air-shower (sub-PeV γ) data

Profile Likelihood Technique

Profile Likelihood Technique

Neutrino Constraints on Dark Matter Decay

- Neutrino bound is very powerful at high energies
- Cascade γ -ray bound: more conservative/robust at high m_{dm}

Cohen, KM, Rodd, Safdi, and Soreq 17 PRL

Pass 8, eight-year Fermi data w. non-Poissonian template fitting method

Gamma-ray limits are improved independently of astrophysical modeling

Cohen, KM, Rodd, Safdi, and Soreq 17 PRL

Cohen, KM, Rodd, Safdi, and Soreq 17 PRL

Anti-proton constraints are competing for soft channels such as $DM \rightarrow bb$

Cohen, KM, Rodd, Safdi, and Soreq 17 PRL

tension w. diffuse VHE γ -ray limits that are important at ultrahigh energies

Cohen, KM, Rodd, Safdi, and Soreq 17 PRL

Pass 8, eight-year Fermi data w. non-Poissonian template fitting method

Extension to Superheavy Dark Matter?

Cohen, KM, Rodd, Safdi, and Soreq 17 PRL in press

Constraints up to ~10¹¹ GeV thanks to "cascade" bounds

Other Final States

常

*

-33 ... 43 TA

9米

Examples of Models (EFT)

EFT (up to dimension 6)

$\Big(R_{SU(2)}\Big)_Y$	operator	final states	ratios of BR's, $m_\chi \gg {\rm TeV}$	$\tau \gtrsim 10^{27} \ [s]$	
spin 0					
(0)0	$\chi H^{\dagger} H$	$hh,Z^0Z^0,\!W^+W^-,\!f\bar{f}$	$1:1:2:16N_c y_f^2 \frac{v^2}{m_\chi^2}$	$\bar{m}_\chi/\bar{\Lambda}^2\gtrsim 9\times 10^{79a}$	
	$\chi \left(LH ight) ^{2}$	$\begin{split} & \nu\nu hh, \nu\nu Z^0 Z^0, \nu\nu Z^0 h, \\ & \nu e^- h W^+, \nu e^- Z^0 W^+, e^- e^- W^+ W^+, \\ & \nu\nu h, \nu\nu Z^0, \nu e^- W^+, \nu\nu \end{split}$	$\begin{array}{c} 1:1:2:\\ 2:2:4:\\ 24\pi^2 \frac{v^2}{m_\chi^2} \Big(1:1:1:768\pi^2 \frac{v^2}{m_\chi^2}\Big) \end{array}$	$\bar{\Lambda}^4/\bar{m}_\chi^5\gtrsim 1$	
	$\chi H \bar{L} E$	$h\ell^+\ell^-, Z^0\ell^+\ell^-, W^{\pm}\ell^{\mp}\nu, \ell^+\ell^-$	$1:1:2:32\pi^2rac{v^2}{m_\chi^2}$	$\bar{\Lambda}^2/\bar{m}_\chi^3\gtrsim 4\times 10^{29}$	
	$\chi \tilde{H} \bar{Q} U, \phi H \bar{Q} D$	$hqar{q},Z^0qar{q},W^\pm q'ar{q},qar{q}$	$1:1:2:32\pi^2\frac{v^2}{m_\chi^2}$	$\bar{\Lambda}^2/\bar{m}_\chi^3\gtrsim 1\times 10^{30}$	
	$\chi B_{\mu\nu} \overset{(\sim)}{B}{}^{\mu\nu}$	$\gamma\gamma,\gamma Z,ZZ$	$c_W^4: 2 c_W^2 s_W^2: s_W^4$	$\bar{\Lambda}^2/\bar{m}_\chi^3\gtrsim 2\times 10^{31}$	
	$\chi W_{\mu u} W^{(\sim)}_{W}{}^{\mu u}$	$\gamma\gamma, \gamma Z^0, Z^0 Z^0, W^+ W^{-b}$	$s_W^4: 2c_W^2 s_W^2: c_W^4: 2$	$\bar{\Lambda}^2/\bar{m}_\chi^3\gtrsim 6\times 10^{31}$	
	$\chi G_{\mu u} \overset{(\sim)}{G}{}^{\mu u}$	hadrons	1	$\bar{\Lambda}^2/\bar{m}_\chi^3\gtrsim 2\times 10^{32}$	
	$\chi D_{\mu} H^{\dagger} D^{\mu} H$	$hh, Z^0 Z^0, W^+ W^-$	1:1:2	$\bar{\Lambda}^2/\bar{m}_\chi^3\gtrsim 3\times 10^{30}$	
$(2)_{1/2}{}^d$	$V_{\hat{\lambda}} [114]^e$	hhh,hZ^0Z^0,hW^+W^-	1:1:2	$g^2 \bar{m}_\chi \lesssim 2 \times 10^{-53}$	
	$V_{c_{\beta-\alpha}}$ [114] ^{e,f}	$hh, Z^0 Z^0, W^+ W^-$	$\left(1 + (\lambda_T - 2\lambda_A)/\lambda\right)^2 : 1:2$	$\bar{m}_\chi/c^2_{\beta-\alpha}\gtrsim 4\times 10^{48}$	
	$\phi \bar{L} E$	$\ell^+\ell^-$	1	$g^2 \bar{m}_\chi \lesssim 2 \times 10^{-56}$	
	$\tilde{\phi} \bar{Q} U, \phi \bar{Q} D$	qar q	1	$g^2 \bar{m}_\chi \lesssim 6 \times 10^{-57}$	
(3) ₀	$\phi^a \tilde{H} \sigma^a H$	$hh,Z^0Z^0,\!W^+W^-,\!f\bar{f}$	$1:1:2:16N_c y_f^2 \frac{v^2}{m_\chi^2}$	$\bar{m}_\chi/\bar{\Lambda}^2\gtrsim 9\times 10^{79}$	
	$\phi^a W^a_{\mu\nu} B^{\mu\nu}$	$\gamma\gamma, Z^0\gamma, Z^0Z^0$	$c_W^2 s_W^2 : 2 \big(c_W^2 - s_W^2 \big)^2 : c_W^2 s_W^2$	$\bar{\Lambda}^2/\bar{m}_\chi^3\gtrsim 1\times 10^{31}$	
	$\phi^a \bar{L} E \sigma^a H$	$h\ell^+\ell^-,Z^0\ell^+\ell^-,W^\pm\ell^\mp\nu,\ell^+\ell^-$	$1:1:2:32\pi^2 \frac{v^2}{m_\chi^2}$	$\bar{\Lambda}^2/\bar{m}_\chi^3\gtrsim 4\times 10^{29}$	
	$\phi^a \bar{Q} U \sigma^a \tilde{H}, \phi^a \bar{Q} D \sigma^a H$	$hqar{q},Z^0qar{q},W^\pm q'ar{q},qar{q}$	$1:1:2:32\pi^2\frac{v^2}{m_{\chi}^2}$	$\bar{\Lambda}^2/\bar{m}_\chi^3\gtrsim 1\times 10^{30}$	
$(3)_1$	$\phi^a L^T \sigma^a \sigma^2 L$	νν	1	$g^2 \bar{m}_\chi \lesssim 2 \times 10^{-56}$	
spin 1/2					
$(1)_{0}$	$\tilde{H}\bar{L}\psi$	$ u h, \nu Z^0, \ell^{\pm} W^{\mp}$	1:1:2	$g^2 \bar{m}_\chi \lesssim 2 \times 10^{-56}$	
$(2)_{1/2}$	$ ilde{H}ar{\psi}E$	$ u h, \nu Z^0, \ell^{\pm} W^{\mp}$	1:1:2	$g^2 \bar{m}_\chi \lesssim 2 \times 10^{-56}$	
$(3)_0$	$H\bar{L}\sigma^a\psi^a$	$ u h, \nu Z^0, \ell^{\pm} W^{\mp}$	1:1:2	$g^2 \bar{m}_\chi \lesssim 2 \times 10^{-56}$	
spin 1					
(0)0	$\bar{f}\gamma_{\mu}V'^{\mu}f$	$far{f}$	see text	$N_c g^2 \bar{m}_\chi \lesssim 2 \times 10^{-56}$	
	$B_{\mu\nu}F^{\prime\mu\nu}/2$	$far{f}$	see text	$g^2 \bar{m}_\chi \lesssim 4 \times 10^{-56}$	

Model-Dependent Results

Other Tests? Search for Nearby DM Halos

v Limits on Annihilating Dark Matter

v from Galactic halo and center complementary to γ-ray limits

v from Galactic clusters

complementary to γ -ray limits

Constraints from Neutrino Flavors

Shower-to-track ratio -> flavor information (ex. IceCube Collaboration 15 ApJ) BSM physics tests w. sufficient statistics (especially by Gen2)

Neutrino Decay: Normal Hierarchy

 $\mathcal{Z}\left(z
ight)\simeq a+be^{-cz}$ redshift evolution

$$D(E_0, z, \tau/m) = \left[\mathcal{Z}(z)\right]^{-\frac{m}{\tau}\frac{L_H}{E_0}}$$

Neutrino Decay: Inverted Hierarchy

IH is not disfavored yet by the flavor information

Secret Neutrino Interactions

Effects on Cosmic Neutrino Spectra

Hunting Gaps & Future Constraints

Pseudo-Dirac Neutrinos

Neutrino Decay

Neutrinos may decay (as studied in Majoron models) HE cosmic neutrinos provide a special way to test for $m_v \sim 0.1 \text{ eV}_{Beacom, Bell, Hooper, Pakvasa & Weiler 04}$

$$\frac{dN_i}{dt} = -\left(\frac{m_i}{\tau_i}\frac{1}{E_\nu}\right)N_i \qquad \qquad \kappa_i^{-1} \equiv \tau_i/m_i$$

$$\kappa^{-1} \left[\frac{\mathrm{s}}{\mathrm{eV}} \right] \simeq 10^2 \; \frac{L \,[\mathrm{Mpc}]}{E_{\nu} \,[\mathrm{TeV}]} \quad \text{or} \quad L_{\mathrm{dec}} \simeq 0.01 \cdot \kappa^{-1} \left[\mathrm{s} \; \mathrm{eV}^{-1} \right] E_{\nu} \left[\mathrm{TeV} \right] \; \mathrm{Mpc}$$

Complete decay of all eigenstates: SN 1987A $\kappa^{-1} \gtrsim 10^5 \text{ s eV}^{-1}$ Invisible decay

$$\begin{split} P_{\alpha\beta}^{\text{inv}}\left(E_{0},z\right) &= \sum_{i=1}^{3} |U_{\alpha i}|^{2} |U_{\beta i}|^{2} \frac{N_{i}\left(E_{0},z,\kappa_{i}^{-1}\right)}{\hat{N}_{i}} \\ \text{Visible decay (decay into the lowest mass eigenstate)} \\ P_{\alpha\beta}^{\text{vis,NH}} &= |U_{\alpha 1}|^{2} |U_{\beta 1}|^{2} \left[\frac{N_{1} + \left(\hat{N}_{2} - N_{2}\right) + \left(\hat{N}_{3} - N_{3}\right)}{\hat{N}_{1}} \right] + |U_{\alpha 2}|^{2} |U_{\beta 2}|^{2} \frac{N_{2}}{\hat{N}_{2}} + |U_{\alpha 3}|^{2} |U_{\beta 3}|^{2} \frac{N_{3}}{\hat{N}_{3}} \end{split}$$

Future Constraints on Neutrino Decay

Constraints on Self-Interactions

- An example that IceCube can be used for testing nonstandard interactions
- Can be more powerful than laboratory tests

A Phenomenological Model

6-dimensional operator
$$\mathcal{L} = -\frac{g}{\Lambda^2} \Phi (HL)^2 + cc_{ij}$$

$$\mathbf{EW} \text{SSB \& LN explicit breaking} \\ \Phi = \phi + \mu \quad \langle \Phi \rangle = \mu.$$

$$\mathcal{L} = -\frac{1}{2} \sum_{i} (m_{\nu_i} + \mathcal{G}_i \phi) \nu_i \nu_i + cc + ...,$$

$$m_{\nu_i} = \frac{g_i \mu v^2}{\Lambda^2}, \quad g = \text{diag}(g_1, g_2, g_3), \quad \mathcal{G}_i = \frac{m_{\nu_i}}{\mu} = \frac{g_i v^2}{\Lambda^2}$$

There are many possibilities to induce neutrino-neutrino scattering

Example 1 (type II seesaw)

$$V_{UV} = \left\{ \lambda \Phi^* \Delta^a H^{\dagger} \sigma^a \epsilon H^* + \Delta^a L^T \epsilon \sigma^a y L + Y_l H^{\dagger} L e^c + cc \right\} + M^2 \Delta^{a*} \Delta^a + m_{\phi}^2 |\Phi|^2 + \lambda_{\phi} |\Phi|^4 + V_{\mathrm{U}(1)_{\mathcal{V}}}$$

Example 2

$$V_{UV} = \left\{ M\psi\psi^{c} + y'\Phi\psi^{c}\psi^{c} + y(HL)\psi + Y_{l}H^{\dagger}Le^{c} + cc \right\} + m_{\phi}^{2}|\Phi|^{2} + \lambda_{\phi}|\Phi|^{4} + V_{\mathrm{U}(1)_{\mathcal{U}}}$$

Observational Features

To see a sizable effect in IceCube, we need

$$\mathcal{G} \gtrsim 10^{-3} \left(rac{m_{\phi}}{10 \ \mathrm{MeV}}
ight) \quad \mathrm{or} \quad \Lambda \lesssim 8 \ \mathrm{TeV} imes \left(rac{m_{\phi}}{10 \ \mathrm{MeV}}
ight)^{-rac{1}{2}} g^{rac{1}{2}}$$

upgoing muon

shower

10² 10³ Signal+Bkg. (w. new interaction) Signal (w. new interaction) Signal+Bkg. (w.o. new interaction) Signal (w.o. new interaction) Bkg. Atm. Neutrinos and Muons Bkg. Atm. Neutrinos (conventional) Bkg. Atm. Neutrinos Bkg. Atm. Neutrinos (prompt) 10^{2} $E_{\mu} \; (dN/dE_{\mu})$ Events 10¹ 10¹ 10^{0} 10^{0} 10⁵ 10⁶ 10⁵ 10⁶ E_{dep} [GeV] E_{..} [GeV] general cautions: deposited energy, muon energy < neutrino energy unfolded spectrum derived a flavor ratio 1:1:1

Experimental Constraints

Constraints: light meson decay, Z invisible width, $0\nu\beta\beta$ decay (& non-unitarity mixing, LFV processes, cosmology...)

Active v scattering: G < 0.01 (i.e. $10^{-3} < G < 0.01$ needed)

 $\bar{\nu}_{\mu}$

Sterile v scattering: constraints can be weaker due to $sin\theta_m$

Improvements in Future?

 ν_{τ} +N $\rightarrow \tau$ +X

$[N_{GR}, N_{DB}]$	$\Phi \propto E^{-2.2}$	$\Phi \propto E^{-2.5}$
pp	[23, 5]	[8, 2]
$pp \text{ (with } \mu^+ \text{ damping)}$	[15, 6]	[6, 2]
$p\gamma \ (\text{canonical } \pi^-)$	[11, 6]	[4, 2]
neutron decay	[73, 4]	[28, 1]

Shoemaker & KM 16 PRD