Recent results from the Telescope Array experiment

Masahiro TAKEDA (ICRR)

VHEPA2019 (ICRR), 2019/02/18(Mon)

< The Telescope Array (TA) Collaboration

R.U. Abbasi¹, M. Abe¹³, T.Abu-Zayyad¹, M. Allen¹, R. Anderson¹, R. Azuma², E. Barcikow, W. Belz¹, D.R. Bergman¹, S.A. Blake¹, R. Cady¹, M.J. Chae³, B.G. Cheon⁴, J. Chiba⁵, M. Chikawa⁶, W.R. W. B. (1997), T. Fujii⁸, M. Fukushima^{8,9}, T. Goto¹⁰, W. Hanlon¹, Y. Hayashi¹⁰, N. Hayashida¹¹, K. Hibino¹¹, K. Honda¹², D. Ikeda⁸, N. Inoue¹³, T. Ishii¹², R. Ishimori², H. Ito¹⁴, D. Ivanov¹, C.C.H. Jui¹, K. Kadota¹⁶, F. Kakimoto², O. Kalashev¹⁷, K. Kasahara¹⁸, H. Kawai¹⁹, S. Kawakami¹⁰, S. Kawana¹³, K. Kawata⁸, E. Kido⁸, H.B. Kim⁴, J.H. Kim¹, J.H. Kim²⁵, S. Kitamura², Y. Kitamura², V. Kuzmin¹⁷, Y.J. Kwon⁷, J. Lan¹, S.I. Lim³, J.P. Lundquist¹, K. Machida¹², K. Martens⁹, T. Matsuda²⁰, T. Matsuyama¹⁰, J.N. Matthews¹, M. Minamino¹⁰, K. Mukai¹², I. Myers¹, K. Nagasawa¹³, S. Nagataki¹⁴, T. Nakamura²¹, T. Nonaka⁸, A. Nozato⁶, S. Ogio¹⁰, J. Ogura², M. Ohnishi⁸, H. Ohoka⁸, K. Oki⁸, T. Okuda²², M. Ono¹⁴, A. Oshima¹⁰, S. Ozawa¹⁸, I.H. Park²³, M.S. Pshirkov²⁴, D.C. Rodriguez¹, G. Rubtsov¹⁷, D. Ryu²⁵, H. Sagawa⁸, N. Sakurai¹⁰, A.L. Sampson¹, L.M. Scott¹⁵, P.D. Shah¹, F. Shibata¹², T. Shibata⁸, H. Shimodaira⁸, B.K. Shin⁴, J.D. Smith¹, P. Sokolsky¹, R.W. Springer¹, B.T. Stokes¹, S.R. Stratton^{1,15}, T.A. Stroman¹, T. Suzawa¹³, M. Takamura⁵, M. Takeda⁸, R. Takeishi⁸, A. Taketa²⁶, M. Takita⁸, Y. Tameda¹¹, H. Tanaka¹⁰, K. Tanaka²⁷, M. Tanaka²⁰, S.B. Thomas¹, G.B. Thomson¹, P. Tinyakov^{17,24}, I. Tkachev¹⁷, H. Tokuno², T. Tomida²⁸, S. Troitsky¹⁷, Y. Tsunesada², K. Tsutsumi², Y. Uchihori²⁹, S. Udo¹¹, F. Urban²⁴, G. Vasiloff¹, T. Wong¹, R. Yamane¹⁰, H. Yamaoka²⁰, K. Yamazaki¹⁰, J. Yang³, K. Yashiro⁵, Y. Yoneda¹⁰, S. Yoshida¹⁹, H. Yoshii³⁰, R. Zollinger¹, Z. Zundel¹

¹ High Energy Astrophysics Institute and Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah, USA

 10 Graduate School of Science, Osaka City University, Osaka, Osaka, Japan

- ¹⁶ Department of Physics, Tokyo City University, Setagaya-ku, Tokyo, Japan
- 17 Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
- ¹⁸ Advanced Research Institute for Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
- 19 Department of Physics, Chiba University, Chiba, Chiba, Japan
- 20 Institute of Particle and Nuclear Studies, KEK, Tsukuba, Ibaraki, Japan
- 21 Faculty of Science, Kochi University, Kochi, Kochi, Japan
- 22 Department of Physical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
- ²³ Department of Physics, Sungkyunkwan University, Jang-an-gu, Suwon, Korea
- 24 Service de Physique Théorique, Université Libre de Bruxelles, Brussels, Belgium
- ²⁵ Department of Physics, School of Natural Sciences, Ulsan National Institute of Science and Technology, UNIST-gil, Ulsan, Korea
- 26 Earthquake Research Institute, University of Tokyo, Bunkyo-ku, Tokyo, Japan
- ²⁷ Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Hiroshima, Japan
- ²⁸ Advanced Science Institute, RIKEN, Wako, Saitama, Japan
- ²⁹ National Institute of Radiological Science, Chiba, Chiba, Japan
- ³⁰ Department of Physics, Ehime University, Matsuyama, Ehime, Japan

 $^{^2}$ Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo, Japan

³ Department of Physics and Institute for the Early Universe, Ewha Womans University, Seodaaemun-gu, Seoul, Korea

⁴ Department of Physics and The Research Institute of Natural Science, Hanyang University, Seongdong-gu, Seoul, Korea

⁵ Department of Physics, Tokyo University of Science, Noda, Chiba, Japan

⁶ Department of Physics, Kinki University, Higashi Osaka, Osaka, Japan

⁷ Department of Physics, Yonsei University, Seodaemun-gu, Seoul, Korea

 $^{^{8}}$ Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba, Japan

⁹ Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, the University of Tokyo, Kashiwa, Chiba, Japan

 $^{^{11}}$ Faculty of Engineering, Kanagawa University, Yokohama, Kanagawa, Japan

¹² Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Kofu, Yamanashi, Japan

 $^{^{13}}$ The Graduate School of Science and Engineering, Saitama University, Saitama, Saitama, Japan

¹⁴ Astrophysical Big Bang Laboratory, RIKEN, Wako, Saitama, Japan

¹⁵ Department of Physics and Astronomy, Rutgers University - The State University of New Jersey, Piscataway, New Jersey, USA

MD FD 14 telescopes $-5.2m^{2}$ – 256 PMTs

 -1° pixel

SD array 507 detectors -1.2km grid

- $-3.0m^{2}$
- wireless comm
- solar panel

BRM / LR FD 12 telescopes $-6.8m^{2}$

- 256 PMTs
- -1° pixel

< SD Event Example >

< TA Energy Estimation >

< Energy Spectrum (TA-SD: 9yrs) >

< Declination Dependence >

< TALE (TA Low-energy Extension) >

400m spacing

• Hybrid = FD + SD • 10^{16} eV $-10^{18.5}$ eV

< Energy Spectrum (TALE-FD: 2yrs) >

< Energy Spectrum (TA-SD, TA-FD, TALE-FD) >

< FD Station @ Black Rock Mesa >

< Xmax distribution (1/6)

< SD Composition (BDT) >

- $< \ln A >= 2.0 \pm 0.1 (stat.) \pm 0.44 (syst.)$
- No significant energy dependence
- Heavier than proton

PRD 99(2019)022002

< SD Composition (BDT) >

- $< \ln A > = 2.0 \pm 0.1 (\text{stat.}) \pm 0.44 (\text{syst.})$
- No significant energy dependence
- Heavier than proton

6

5

4

Fe

Si

TA SD, QGSJET II-03 ⊢ HiRES stereo, QGSJET II-03 ⊢ Yakutsk muon, QGSJET II-03 ⊢

< Muon Excess in MC Comparison >

- Lateral distribution with various hadronic models; QGSJET II-03 , QGSJET II-04 , EPOS 1.99 , Sibyll 2.1
- Data is larger than MC for all considered models.

PRD 98(2018)022002

< Muon Excess in p/Fe Comparison >

R (m)	Data/MC proton	Data/MC iron
[1910, 2160]	$1.72 \pm 0.10(stat.) \pm 0.40(syst.)$	$1.26 \pm 0.07(stat.) \pm 0.29(syst.)$
[2760, 3120]	$3.14 \pm 0.36(stat.) \pm 0.72(syst.)$	$1.74 \pm 0.19(stat.) \pm 0.40(syst.)$

< Anisotropy around 1EeV @ TA >

AstroPartPhys 86(2017)21

PSRs 0.3% in l, 1.3% in b

< Hot Spot (Independent 5yrs) >

• 1st 5yrs (72 events)

• 2nd 5yrs (85 events)

< Hot Spot (Temporal Development) >

• 10yrs hotspot position • 1st 5yrs (72 events) • $\theta \leq 25^{\circ}$ 60 5 4 30 50 3 2 45 🗕 Data Cumulative events in the Hotspot 1 40 360 180 $\pm 2 \sigma$ 0 35 -1 $\pm 1 \sigma$ -2 30 -30 -3 25 -4 -60 20 • 2nd 5yrs (85 events) 15 60 10 30 5 2 2 8 10 6 Years 360 180 0 -1 \Downarrow -2 Consistent with linear increase within 2σ . -3 -4 -60

< Hot / Cold Spot (Energy Distribution) >


```
@~(9^{h}16^{m}, \, 45^{\circ})
```

$$- ext{ Inside } (heta \leq extsf{28.43}^\circ)$$

- Outside $(\theta > 28.43^{\circ})$
- 7yrs data

ApJ 862(2018)91

 $6.17\sigma(\text{local}) \rightarrow 3.74\sigma(\text{global})$

< Flux Pattern from Nearby Starburst Galaxies >

• SBG model flux w/ $\theta = 12.9^{\circ}$

 $\Phi_{mod} = f_{SBG} \Phi_{SBG} + (1 - f_{SBG}) \Phi_{ISO}$

- $-f_{SBG}$: SBG fraction (top: $f_{SBG} = 0$)
- Φ_{ISO} : Isotropic flux
- Φ_{SBG} : weighted sum of von Mises-Fisher distributions (~ spherical 2D Gaussian)

 $- \theta$: RMS deviation (~ smearing)

• SBG model flux w/ TA exposure

$$-\theta = 12.9^{\circ}$$

- $-f_{SBG} = 9.7\%$
- $\ Energy \geq 43 EeV \qquad = 39 EeV \times 1.1$

ApJL 867(2018)L27

< Flux Pattern from Nearby Starburst Galaxies >

< TAx4 Experiment >

• 2 FD stations

- refurbished 12 HiRes-II telescopes
- approved by US NSF 2016
- first light at the northern station
- Site construction is underway at the southern station.

• \sim 3000km² SD array (Quadruple area)

- approved by Japanese government 2015
- 500 scintillator SDs (plan)
- 2.08km spacing
- 3yrs construction
- Deployment is on going.

• by 2020,

- Get 19 TA-equiv years of SD data
- Get 16.3 (current) TA years of hybrid data

< TAx4-FDs >

- North station @ MD
 - -4 telescopes
 - has operated since 2018
- South station @ BRM
 - -6/8 telescopes
 - under construction

< TAx4-SD Assembly @ Delta >

- \bullet prepared 205 SDs in JP + 30 SDs in KR., and then transported to Delta.
- assembled all SDs in Delta in this winter.

< TAx4-SD Deployment >

- US Gov't. shutdown delays our schedule.
- We will fly in this week !

(pictures: original TA-SDs)

< Summary >

- Telescope Array is UHECR observatory in the northern hemisphere.
 - Hybrid = Fluorescence Detectors + 700 km² Surface Detector array
- TA hybrid Xmax measurements
 - Below $10^{18.8}$ eV, allowing 10-20g/cm² shifts, data points looks like "proton".
 - Above $10^{18.8}$ eV, data points looks like heavier primary than "proton",
 - There are significant overlaps between plots of different primaries because of small statistics.
- Energy spectrum from 9 year observations by TA SD array
 - Auger-TA discrepancy above $10^{19.4} eV$
 - Indication of the declination dependence
- TA Low-energy Extension (TALE) FD have measured energy spectrum. – TA and TALE covered $10^{15.3}$ eV to 10^{20} eV and observed spectral features.
- We have reported a Hot Spot in the direction of Ursa Major. It now appears larger(extended) than we originally thought.
- We need much more data at high energy end. TAx4 comes soon.
- Full TALE SD is now on-line !
 - Hybrid measurement has extended the energy reach below ${\sim}10^{16} eV.$