

Telescope Array

- Explore the origin of the highest energy cosmic rays -

Hiroyuki Sagawa (ICRR, University of Tokyo) on behalf of the Telescope Array Collaboration

ICRR External Review

16 May 2019

Outline

- Introduction
- Telescope Array (TA) results
 - Energy spectrum
 - Composition
 - Anisotropy
- TA extension
 - TAx4
 - TALE

TA Collaboration

6 countries (Japan, USA, Korea, Russia, Belgium, Czech)

R.U. Abbasi¹, M. Abe², T. Abu-Zayyad¹, M. Allen¹, R. Azuma³, E. Barcikowski¹, J.W. Belz¹, D.R. Bergman¹, S.A. Blake¹, R. Cady¹, B.G. Cheon⁴, J. Chiba⁵, M. Chikawa⁶, A. Di Matteo⁷, T. Fujii¹, K. Fujita⁹, M. Fukushima^{8,10}, G. Furlich¹, T. Goto⁹, W. Hanlon¹, M. Hayashi¹¹, Y. Hayashi⁹, N. Hayashida¹², K. Hibino¹², K. Honda¹³, D. Ikeda⁸, N. Inoue², T. Ishii¹³, R. Ishimori³, H. Ito¹⁴, D. Iveno¹, H.M. Jeong¹⁵, S. Jeong¹⁵, C.C.H. Jui¹, K. Kadota¹⁶, F. Kakimoto³, O. Kalashev¹⁷, K. Kasahara¹⁸, H. Kawai¹⁹, S. Kawakami⁹, S. Kawana K. Kawata⁸, E. Kido⁸, H.B. Kim⁴, J.H. Kim¹, J.H. Kim²⁰, S. Kishigami⁹, S. Kitamura³, Y. Kitamura³, V. Kuzmin¹⁷, M. Kuznetsov¹⁷, Y.J. Kwon²⁷, K.H. Lee¹⁵, B. Lubsandorzhiev¹⁷, J.P. Lundquist¹, K. Machida¹³, K. Martens¹⁰, T. Matsuyama¹⁹, J.N. Matthews¹, R. Mayta⁹, M. Minamino⁹, K. Mukai¹³, I. Myers¹, K. Nagasawa², S. Nagataki¹⁴, R. Nakamura²², T. Nakamura²³, T. Nonaka⁸, H. Oda⁹, S. Ogio⁹, J. Ogura³, M. Ohnishi⁸, H. Ghoka⁸, T. Okuda²⁴, Y. Omura⁹, M. Ono¹⁴, R. Onogi⁹, A. Oshima⁹, S. Ozawa¹⁸, I.H. Park¹⁵, M.S. Pshirkov^{17,25}, J. Remington¹, D.C. Podligue⁴, G. Rubtsov¹⁷, D. Ryu²⁰, H. Sagawa⁸, R. Sahara⁹, K. Saito⁸, Y. Saito²², N. Sakaki⁸, N. Sakurai⁹, L.M. Scott²⁶, T. Seki²², K. Sekin⁹, PD, Shah¹, F. Shibata¹³, T. Shibata⁸, H. Shimodaira⁸, B.K. Shin⁹, H.S. Shin⁸, J.D. Smith¹, P. Sokolsky¹, B.T. Stokes¹, S.R. Stratton^{1,26}, T.A. Stroma¹, T. Suzawa², Y. Takagi⁹, Y. Takahashi⁹, M. Takamura⁵, M. Takeda⁸, R. Takeishi¹⁵, A. Taketa²⁷, M. Takita⁸, Y. Tameda²⁸, H. Tanaka⁹, K. Tanaka²⁹, M. Tanaka³⁰, S.B. Thomas¹, G.B. Thomson¹, P. Tinyakov^{7,17}, I. Tkachev¹⁷, H. Tokuno³, T. Tomida²², S. Troitsky¹⁷, Y. Tsunesada⁹, K. Tsutsumi³, Y. Uchihori³¹, S. Udo¹², F. Urban³², T. Wong¹, M. Yamamoto²², R. Yamane⁹, H. Yamaoka³⁰, K. Yamazaki¹², J. Yang³³, K. Yashiro⁵,

¹High Energy Astrophysics Institute and Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah, USA, ²The Graduate School of Science and Engineering, Saitama University, Saitama, Saitama, Japan, ³Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo, Japan, ⁴Department of Physics and The Research Institute of Natural Science, Hanyang University, Seongdong-gu, Seoul, Korea, ⁵Department of Physics, Tokyo University of Science, Noda, Chiba, Japan, ⁶Department of Physics, Kindai University, Higashi Osaka, Osaka, Japan, ⁷Service de Physique Th'eorique, Universit'e Libre de Bruxelles, Brussels, Belgium, ⁸Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba, Japan, ⁹Graduate School of Science, Osaka City University, Osaka, Osaka, Japan, ¹⁰Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, the University of Tokyo, Kashiwa, Chiba. Japan. ¹¹Information Engineering Graduate School of Science and Technology, Shinshu University, Nagano, Nagano, Japan, ¹²Faculty of Engineering, Kanagawa University, Yokohama, Kanagawa, Japan, ¹³Interdisciplinary Graduate School of Mcdicine and Engineering, University of Yamanashi, Kofu, Yamanashi, Japan, ¹⁴Astrophysical Big Bang Laboratory, RIKEN, Wako, Saitama, Japan, ¹⁵Department of Physics, Sungkyunkwan University, Jang-an-gu, Suwon, Korea, ¹⁶Department of Physics, Tokyo City University, Setagaya-ku, Tokyo, Japan, ¹⁷Ipstruct for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia, ¹⁸Advanced Research Institute for Science and Engineering, Waseda University, himjuku-ku, Tokyo, Japan, ¹⁹Department of Physics, Chiba University, Chiba, Chiba, Japan, ²⁰Department of Physics, School of Natural Sciences, Ulsan National Institute of Science and Technology, UNIST-gil, Ulsan, Korea, ²¹Department of Physics, Yonsei University, Seodaemun-gu, Seoul, Korea, ²²Academic Access of Science and Technology Institute of Engineering, Shinshu University, Nagano, Nagano, Japan, ²³Faculty of Science, Kochi University, Kochi, Kechi, Japan, ²⁴Department of Physical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan, ²⁵Sternberg Astronomical Institute, Moscow M.V. Lomonosov State University, Moscow, Russia, ²⁶Department of Physics and Astronomy, Rutgers University – The State University of New Jersey, Piscataway, New Jersey, USA, ²⁷Earthquake Research Institute, University of Tokyo, Bunkyo-ku, Tokyo, Japan, ²⁸Department of Engineering Science, Faculty of Engineering, Osaka Electro-Communication University, Neyagawa-shi, Osaka, Japan, ²⁹Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Hiroshima, Japan, ³⁰Institute of Particle and Nuclear Studies, KEK, Tsukuba, Ibaraki, Japan, ³¹National Institute of Radiological Science, Chiba, Chiba, Japan, ³²CEICO, Institute of Physics, Czech Academy of Sciences Prague, Czech Republic, ³³Department of Physics and Institute for the Early Universe, Ewha Womans University, Seodaaemun-gu, Seoul, Korea, ³⁴Department of Physics, Ehime University, Matsuyama, Ehime, Japan

Energy Spectrum Results

SD Event Reconstruction

TA SD Spectrum (9 years data)

ICRC2017

TA & Auger Spectra

Declination dependence of breaks

submitted to ApJ, arXiv:1801.07820

Energy spectra of TA and Auger in the common declination band. They agree at about 0.5σ level

Break points are the same

Energy spectra of TA above and below δ =24.8° They disagree at 4σ level

Global Significance -3.5σ

TA Low Energy Extension (TALE)

Galactic to Extra-Galactic Transition

TALE-SD array

10 new telescopes to look higher in the sky (31-59°) to see shower development to much lower energies In operation since 2013

Graded infill surface detector array - more densely packed surface detectors (lower energy threshold) Partially operated since 2013 Fully in operation since Feb. 2017

TALE FD Spectrum

R.U. Abbasi et al., ApJ 865:74, 2018

TA combined, Auger, KASCADE-Grande

D. Ivanov, UHECR2018

TALE hybrid event example

Zen.[deg]	Azi.[deg]
23.6	-33.5
CoreX[km]	CoreY[km]
7.33	17.63
Xmax[g/cm ²]	E[eV]
823	1017.94

Composition Results

Xmax Distributions for different energies

R.U. Abbasi et al., Ap. J., 858, 76 (2018)

Shower maxima data over 8.5 years using hybrid events (two southern FDs with the SDs)

<Xmax> vs logE

R.U. Abbasi et al., Ap. J., 858, 76 (2018)

Xmax Shape analysis

R.U. Abbasi et al., Ap. J., 858, 76 (2018) $18.2 \le \log_{10}(E/eV) < 18.3$ **Fe** QGSJet II-04 proto Color indicates the amount of shift in Xmax QGSJet II-04 helium QGSJet II-04 nitrog QGSJet II-04 iron 5 300 applied to data for best fit to MC (in g/cm^2) 250 200 150 Compatible Shift X_{max} (g/cm o-value 20 QGSJet II-04 heliun QGSJet II-04 proton data 0 -le: +7 g/cm²¹⁰⁻ 5% +29 g/cm² -20 Fe QGSJet II-04 proton 10⁻² -40 QGSJet II-04 helium QGSJet II-04 nitrogen QGSJet II-04 iror QGSJet II-04 nitrogen QGSJet II-04 iron -19 g/cm² Fe: --41 g/cm² -60 10⁻³ 18.2 19.4 19.6 log₁₀(E/eV) 18.4 18.6 18.8 19.2 19

- max. logL derived p rejects (at 95% C.L.) all species except H (E<10^{19.0}eV)
- max. logL derived p FAILS to reject (at 95% C.L.) any species (E>10^{19.2}eV)

Xmax>: Auger vs TA measurements by Auger&TA Working Group

- Auger and TA data cannot compare directly due to different approach of data analysis
- Indirect comparison
 - Auger TA: (Auger mix composition model) x (TA simulation/reconstruction/analysis) + TA result
 - This simulates TA acceptance and biases
 - TA Middle Drum

[ApP 64 (2015) 49]

TA Black Rock Mesa/Long Ridge

compare

[ApJ 858 (2018) 76]

TA agrees with Auger within systematic uncertainty.

Anisotropy Results

Hotspot (5 years)

R.U. Abbasi et al., ApJL 790, L21, 2014

- 5-year by the TA SD
- 72 events with E > 57 EeV
- Non = 19, Nbg = 4.49
- Local significance 5.1σ
- Assume 5 search window radii (15°, 20°, 25°, 30°, 35°)
- Global significance 3.5σ

Hotspot center shifted from SGP by ~19°

Hot Spot update (2018)

Kawata, UHECR2018

157 events above 5.7x10¹⁹ eV for 10 years

- With original 20° oversampling
- Hotspot looks larger than originally thought

• Scan over 15°, 20°, 25°, 30°, 35°

- With 25° oversampling
- Max post-trial significance of $\sim 3\sigma$

Nearby Galaxy Clusters

Spectral Anisotropy

(from the point of regions with more/less nearby objects)

submitted to PRL, arXiv:1707.04967

 E_{ON} and E_{OFF} : 3.2 σ difference

Spectral anisotropy (cold/hot spot)

TAx4

- quadruple TA to accelerate data collection speed
 - Surface detector(~3000 km²)
 - 500 scintillator SDs with 2.1 km spacing
 - Fund from JSPS (JFY2015-2019) +KRF(2017-)
 - Deployed 257 SDs in 2019
 - Fluorescence detector
 - Xmax meas. & SD energy check
 - 2 FD stations (HiRes-II telescopes)
 - First light at the northern station
 - The southern station: under construction
 - Fund from NSF (2016 -)

TAx4 SD

- Assembly of scintillator counters
 - 260 counters (230 in Japan, 30 in Korea*)

*: fund from KRF

Akeno Observatory

Some modifications (fiber layout, PMT[ET -> HP], new WLAN modem and DAQ etc.)

Final assembly in CRC**

CRC** = Cosmic Ray Center in Delta City near TA site Photo at CRC in Jan. 2019

TAx4 SD

- Permission of the deployment by BLM*: delayed
 - EA (Environmental Assessment) approval in 2019.02 due to
 - related surveys (animals, plants, remains, landownership) etc.
 - another 1 mon. delay by US government shutdown in 2018.12-2019.01

BLM^{*} = Bureau of Land Management

Deployment work by helicopter in Feb and Mar of 2019

(~1.5 months)

- Bird habitation period (Mar Aug)
 - Helicopter work is not allowed
 - But a special permission this March

TAx4 SD

		February, 2019											March, 2019																										
		12	13 14	4 15	5 16	17	18 1	.9 2	0 21	22	23	24	25	26 2	27 2	28	1	2	3	4	5 6	67	8	9	10	11	12	13	14	15	16 1	.7	18 1	9 2	21	. 22	23	24	25
1	SD (CRC to SAs*)																																						
2	SD deploy. by helicopter																																						
3	Tower construction																																						
4	SD tuning by helicopter																																						

SA* = Staging Area

TAx4 SD event example

TAx4 FD

• MD site: in operation since Feb. 2018~

BRM site: under construction

Plan to be commissioning by the end of June, 2019

TAx4

- Resume fine tuning for deployed SDs (ATVs) from June, 2019
- Plan to increase the effective area toward full TAx4 SD
- Full TAx4 in 10 years gives ~50 years of TA SD data adding previous TA data
 - This can give discovery level for the current aniso. hints (~ 2σ)
 - Even with the current ~2.5 times TA SD in 5 years (TA SD 23.5 years),
 - 5σ or beyond expected for the current evidences (3σ or beyond) of anisotropy

Summary

- TA SD/FD and TALE FD energy spectrum shows spectral features (10^{15.4} eV < E < over 10²⁰ eV)
 - cutoff (10^{19.81} eV), ankle (10^{18.69} eV)
 - 2^{nd} knee (10^{16.22} eV) and low-energy ankle (10^{17.04} eV)
- TA Xmax: compatible with light composition (E > ~10^{18.2} eV)
 - Need more statistics for $E > 10^{19} eV$
- We are seeing evidences of anisotropy (~3σ)
- TA and Auger Working Group worked very well to understand the initially-claimed differences
- TAx4 (SD+FD) has partially started
- Full TALE SD was deployed and is in operation.

END

Observation time

FD

MJD

Energy Scale Check and Resolution

Comparison with other measurements

C. Jui, SuGAR2018

Cluster events with E > 100 EeV

2 doublets above 100 EeV.

→ the probability to have ≥2 doublets at $\leq \sqrt{2}$ deg is

P = 0.30% (2.8σ)

Xmax distributions

R.U. Abbasi et al., ApJ, 858 :76 (27pp), 2018

Comparison to MC

 σ (Xmax) vs <Xmax>

Comparison to MC

(e) $19.4 \le \log_{10}(E/eV) < 19.9$

Systematic

uncertaiinty

Other researches

- Auger SD@TA
 - Problem: μ deficit in AS MC
 - Phase I: station-level comparisons at TA CLF

TA CLF 2 Auger SDs

- EUSO-TA
 - JEM-EUSO prototype

- TALMA (TA Lightning Mapping Array)
 - Coincidence with TA SD events
 9 antennas in TA

• FD for large ground array (aiming low cost)

FAST 4-eye reflection mirror

CRAFFT Mono-eye Fresnel lens

