

ICRR Ex. Rev. 2019 Makoto Sasaki ICRR UTokyo

Ashra @ Mauna Loa

Toward VHE Particle Astronomy (VHEPA)

Chronology: 1997: TA grand design 2000: Signal Finder / Track Finder FE circuits 2000: PAO started construction 2002: ES- v_{τ} FD method published 2002: ES- v_{τ} Imager NTA proposed 2002: renamed into Ashra 2003: VHEPA3 WS @ Kashiwa 2003: Ashra-1 funded 2004: 1st search for OpF on GRB 2008: 1st search for ES v_{τ} on GRB 2013: NTA Lol 2014: VHEPA2014 WS @ Kashiwa 2015: VHEPA2015 WS @ Taipei 2016: VHEPA2016 WS @ Honolulu 2016: redesigned NTA (summit layout) 2019: VHEPA2019 WS @ Kashiwa

Makoto Sasaki *, Yoichi Asaoka, Masashi Jobashi

4. Earth-skimming tau neutrinos

Very high energy neutrinos penetrate the Earth and convert to charged leptons which then travel through the Earth. This sequence is illustrated for an event with a nadir angle θ in Fig. 7. We define

Target Example of VHEPA: Galactic Center

Diffuse emission from the GC without a perceivable cutoff

To clearly fix it, the detector is required to: 1) γ -ray/ ν multiple observation

2) 0.1 deg. resolution like IACT

3) good sensitivity for $E_{\gamma} > 50 \text{ TeV}$

-> Ashra/NTA meets.

HESS GC observation 227 hours / 10 years => Need monitor obs. with wider FOV IACT.

Ashra-1 Light Collector

<u>Optics:</u>

- Modified Baker-Nunn
- <u>Components:</u>
 - Correcting lens (1.0~1.2mφ)
 with 3 acrylic cut plates

Lens:

Focul Surface

Mirror

Lens2

- Spherical mirror (2.2mφ)
 with 7 curved glass plates on adjustable tables.
- Photoelectric lens IT (0.5mφ) on focal sphere suspended with Stewart platform mechanism
- Mount structure with steel channels for easy assembly

=> arcmin. resolution over 42deg FOV
=> affordably cost-effective

Ashra-1 Pipeline Trigger & Readout

Ashra-1 Observation Periods

GRB Optical Flash Search (GRB081203A)

AS Cerenkov Images taken by Ashra-1

CR Observed Energy Spectrum

Obs01 events

Obs03 events

Comparison of ES Tau Neutrino Flux Limits

NTA summit array detection of ν / γ -ray / CR

E 120

20

-20

Hawaii Is.

Mauna Ker

4 3 3

> 0 -1

-2

ES v_{τ} **Acceptance** with fluorescence & Cherenkov

Far Cherenkov light dominantly contributes. <u>×10</u>¹² radial acceptance [cm² s sr] 5000 telescope height fluorescence 0 km 4000 1 km far Cherenkov 2 km 3000 3 km 2000 1000 Cherenkov 50 100 150 200 250 300 350 400 distance of tau emergence from telescope [km]

Otte arXiv:1811.09287

NTA diffuse v sensitivity: with Cherenkov & fluorescence light

トリガー撮像を行った画像

NTA detector unit proto testing triggers

Trigger/readout test with YAG laser pulses

Layout of Ashra-1 FOVs in Obs.4

Simulated southern sky at the Ashra-1 Mauna Loa site at 0:00 on June 23, 2019. The star mark indicates the location of the galactic center (GC). The track of GC (arc) and the FOV of the rearranged Ashra-1 light collectors (circles) are also shown.

Advantage of Ashra-1/NTA imaging GC γ

Ashra-1/NTA Effective detection area S : S increase as θ due to far Cherenkov Cherenkov light: small attenuation \Rightarrow more advantage for higher Energy y air shower

Ground 2D particle array $S = S_0 \cos \theta$ Shower particle electron : severe attenuation => Only effective $\theta < 45^{\circ}$ => Duty cycle < 50%

(HESS: 227hr/10yr) GC survey $T = 1150 \sim 1900 \text{ hr/yr} (\theta = 48 \sim 90^{\circ})$ $S = 0.3 \text{ km}^2/1 \text{ unit } @10 \text{ TeV } (\theta = 70^\circ)$ **12** km²/1unit @1 PeV (θ = 70°)

T = 2300 hr/yr (θ < 45°) @S. lat.16 deg S < 0.2 km² (500m 2D array)

Ashra-1 eff. detection area 13 km²

D(Theta) [km] vs Theta [deg] Detector at 3.3 km a.s.l.

GC γ-ray Effective Detection Area vs Energy

Deep Learning γ /CR Separation in GC monitor

Conclusions

- Ashra/NTA: the 1st to realize VHEPA with γ and ν_{τ}
- Successfully demonstrated the unique features:
 - IACT resolution (0.1deg) covering GC buldge (40deg)
 - Simultaneous DAQ for Ceren., fluo. AS, and opt. transient images
 - CR spectrum, 1st ES- v_{τ} search, 1st search for optical precursor ...
- Obs.4: monitoring GC bulge Ceren. γ-rays
 - Large zenith method => larger light pool diameter at higher energies
 - Clearly settle the HESS extended spectrum
 => Discovery of "UHE" γ-rays from Pevatron.
 - Diffuse γ -ray region (even 4deg x 40deg) can be identified using DL.
- Must eliminate budget exhaustion since 2013 asaps.
- NTA to look out at the summit: enjoys huge acceptance for far Ceren. ES v_{τ} events. => the best v sensitivity in PeV-EeV region with IACT reso.
 - Testing NTA proto at Akeno mainly for demonstration the fluo. trigger.