ALPACA

Masato Takita ICRR, the University of Tokyo for the ALPACA collaboration

External Review Committee @ICRR, Kashiwa, U of Tokyo, 16/May/2019

The ALPACA Experiment

Andes Large area PArticle detector for Cosmic ray physics and Astronomy

Mostly members from BASJE, GRAPES-3, Tibet AS γ

The ALPACA Collabora

IIF, UMSA, Bolivia

Martin SUBIETA, Rolando TICONA, Hugo RIVERA, Mirko RALJEVICH, Javier QUISPE, Pedro MIRANDA

Faculty of Education, Utsunomiya Univ., Japan

Naoki HOTTA

Japan Atomic Energy Agency, Japan

Harufumi TSUCHIYA

Dept. of Physics, Shinshu Univ., Japan

Kazuoki MUNAKATA, Chihiro KATO

ICRR, Univ. of Tokyo, Japan

Masato TAKITA, Munehiro OHNISHI,

Kazumasa KAWATA, Takashi SAKO,

Takashi K. SAKO

<u>College of Industrial Technology, Nihon Univ., Japan</u> Atsushi SHIOMI

Tokyo Metropolitan College of Industrial Tech., Japan

Toshiharu SAITO

National Inst. of Informatics, Japan

Masaki NISHIZAWA

RIKEN, Japan

Norio TAJIMA

Faculty of Engineering, Kanagawa Univ., Japan

Kinya HIBINO, Shigeharu UDO

Faculty of Engineering, Yokohama National Univ., Japan

Yusaku KATAYOSE, Mikihiro KATAOKA, Masaru SUZUKI, Miho WAKAMATSU, Takuro SASAKI, Takanori ASABA

College of Engineering, Chubu Univ., Japan

Akitoshi OSHIMA, Shoichi SHIBATA

Faculty of Engineering, Aichi Inst. of Tech., Japan Hiroshi KOJIMA

Graduate School of Science, Osaka City Univ., Japan

Shoichi OGIO, Yoshiki TSUNESADA

Faculty of Engineering, Osaka Electro-Communication University, Japan

Yuichiro TAMEDA

<u>Graduate School of Information Sciences, Hiroshima</u> <u>City University, Japan</u> Koichi TANAKA

Outline of the ALPACA experiment

- 1)Experimental site: 4740m above sea level, near La Paz in Bolivia Expected budget -> ~ 5 M (AS+MD) USD
 - Muon Detector ~ $5400m^2$ (underground water Cherenkov type)
 - AS Array ~83,000m² (~ 401 x $1m^2$ plastic scintillation detectors)
- 2) Target physics and astrophysics (AS + MD)

10-1000 TeV γ astronomy

(point & extended sources, PeVatron search, origin of CR)

CR rejection power: ~ 99.9 %@100TeV

Advantage to extended sources!

CR anisotropy, Sun shadow, Chemical composition of CR around Knee, etc

Costs & Construction plan of ALPACA

- Year 1: Preparation
- Year 2 : Construction of MD
- Year 3: Construction of AS
- Year 4: Start data-taking
- Observation will continue (5 10 years)
- Cf: Detectors (Japan) + Infrastructure(Bolivia)

Main purpose of ALPACA

- 100 TeV γ -ray astronomy in South
- Locating origin of comic rays

by detecting cosmic 100 TeV gamma rays from cosmic ray accelerator in our galaxy: PeVatrons!

γ -ray sensitivity to point sources

Target γ Sources

- Young SNRs
- Galactic Center
- Dark accelerators (signal only >TeV region)
- Other sources: Diffuse γ on galactic plane, Fermi bubbles, solar disk γ, DM, etc

γ -ray observation: Origin of CR

extending > 100TeV

Where, how, and up to what energy are cosmic rays accelerated in our galaxy?

Origin of Cosmic Rays at the Knee

 5×10^{-2} CFF Grigorov Tibet-III(ICRC2003) 2×10^{-2} This work(QGSJET+HD This work(QGSJET+PD) This work(SIBYLL+HD) 10^{-2} KASCADE(QGSJET 5×10⁻ KASCADE(SIBYLL) **BASJE-MAS** CASA-MIA 2×10^{-3} AKENO(1992)(Array1) AKENO(1992)(Array20) - AKENO(1984) 10 1.1.1.1111 10⁹ 10¹⁰ 10¹¹ Energy (GeV) 10⁵ 10^{6} 10^{7} 10^{8} \checkmark CR acceleration up to several PeV is possible by shock wave acceleration mechanism at SNR

✓Knee-4PeV: of galactic origin!?

 $x^{2}F_{j}(x,E_{p})$ Kelner et al., PRD 74, 034018 (2006)

PeVatron = CR accelerator up to PeV region Should be in our galaxy or very nearby extragalaxy, due to photon absorption! γ -ray observation: proton accelerating objects

SNR observation by Fermi-LAT \rightarrow W44, IC443, W51 – Evidence for π^0 decays

Ackermann, et al (Fermi-LAT), Science (2013) "Detection of the Characteristic Pion-Decay Signature in Supernova Remnants"

γ -Ray Observation : SNR (1 Example)

γ -Ray Observation : Galactic Center (GC)

γ -Ray Observation : Galactic Center (GC)

Very High Energy v observation

Other Targets > 10TeV

- 🗸 Fermi Bubbles
 - Wide FoV observation,
 - Hard spectral index (~-2) around GC
- ✓ Galactic diffuse gamma
 Wide FoV, Very bright in southern sky
- \checkmark Solar disk gamma rays
 - Day time observation needed
 - ?CR origin? hard spectral index (~-2)
- ✓ Nearby AGN
 - >10TeV γ Wide FoV monitoring
 - Hard–spectral AGN at high z existing
- ✓ Very heavy dark-matter search
 - >10TeV GC, dwarf galaxies, SUN
 - Spherically extended γ -ray distibution

Wide FoV • Continuous Observation by ALPACA

Other research themes

- CR anisotropy @ >TeV region in south (Complementary to IceCube)
- The Sun's shadow in south
- Chemical composition of VHE CR (Knee) (AS+MD cf: Other AS experiments &LHC-f)

CR anisotropy: Tibet AS γ (Northern sky)

CR anisotropy: Southern sky

Auger dipole distribution

→ Consistent with the direction in flux-weighted dipole of of 2MRS galaxy catalogue sources, considering deflection by galactic magnetic field

CR anistropy : Energy dependence

CR anisotropy around Galactic Center

Energy spectrum of γ and v of CR origin CR anisotropy

✓ ALPACA: Observation of Sun shadow possible for almost all the year (Complete 1-yr coverage possible, together with Tibet observation)

- Prototype array with ~100 SDs
- and ~1000m²MD
 - ~20% of ALPACA AS in 2019
 - ~20% of ALPACA MD in 2020
- Establishing procedures in Bolivia
 - Construction
 - Import/Export
 - Infrastructure
- Expected sciences
 - Sun shadow
 - CR Anisotropy (TeV region)
 - Bright sub-PeV gamma-ray sources

ALPAQUITA

Summary

ALPACA:

- 1)Experimental site: 4740m above sea level, near La Paz in Bolivia Expected budget -> ~5 M USD
 - Muon Detector ~ $5400m^2$ (underground water Cherenkov type)
 - AS Array ~83,000m² (~ 401 x 1m² plastic scintillation detectors)
- 2) Target physics and astrophysics (AS + MD)
 10-1000TeV γ astronomy (point & extended sources, PeVatron, etc)
 CR anisotropy, Sun shadow, CR chemical composition, etc
 3) ALPAQUITA (~20 % ALPACA AS , in 2019)

(~20% ALPACA MD, in 2020)

End