Super-K Gd

その1、期待される成果とこれまでの技術開発

池田一得 (東大宇宙線研)

20190323 第32回ニュートリノ研究会 「超新星背景ニュートリノ」

1

Contents

- Introduction to SK-Gd
- Physics motivations
- R&D to realize SK-Gd
- Summary

Super-Kamiokande

50000 tons of Water Cherenkov detector

(For Solar neutrino analysis)

Phase	Period	Livetime	Fid. vol.	ID PMTs	KinE thr.
I	1996.4~ 2001.7	1496 (days)	22.5 (kton)	11146 (40%)	4.5 (MeV)
Π	2002.10~ 2005.10	791		5182 (20%)	6.5
Ξ	2006.7~ 2008.8	548	22.5 (>5.5 MeV) 13.3 (<5.5 MeV)		4.5
IV	2008.9~ 2019.1	2860	22.5 (>5.5MeV) 16.5 (4.5 <e<5.5) 8.85(<4.5MeV)</e<5.5) 	11129 (40%)	3.5
V	2019.2~				2

Super-Kamiokande

50000 tons of Water Cherenkov detector

(For Solar neutrino analysis)

Phase	Period	Livetime	Fid. vol.	ID PMTs	KinE thr.
I	1996.4~ 2001.7	1496 (days)	22.5 (kton) 22.5 (>5.5 MeV) 13.3 (<5.5 MeV) 22.5 (>5.5MeV) 16.5 (4.5 <e<5.5) 8.85(<4.5MeV)</e<5.5) 	11146 (40%)	4.5 (MeV)
П	2002.10~ 2005.10	791		5182 (20%)	6.5
	2006.7~ 2008.8	548			4.5
IV	2008.9~ 2019.1	2860		11129 (40%)	3.5
V	2019.2~				

4

Super K-Gd Beacom and Vagins PRL93,171101 (2004)

- Large cross section for thermal neutron (48.89kb)
- Neutron captured Gd emits 3-4 γ ray in total 8 MeV
- We can tag $\bar{\nu}_{e}$ by using the delayed coincidence technique.

Physics targets:

- (1) Supernova relic neutrino (SRN)
- (2) Improve pointing accuracy for galactic supernova
- (3) Precursor of nearby supernova by Si-burning neutrinos
- (4) Reduce proton decay background
- (5) Neutrino/anti-neutrino discrimination (Long-baseline and atm nu's)
- (6) Reactor neutrinos

Why Gd (not 2.2MeV γ) for neutron tagging Number of hit PMT (Nhit) distributions

Efficiency and fake probability

2.2MeV γ : Efficiency: 10~20%, fake probability: ~10⁻² Gd(n, γ)Gd: Efficiency: >80%, fake probability: <10⁻⁴

Physics motivation

Supernova Relic Neutrino (SRN) Discovery of neutrinos from past supernovae!

Theoretical flux prediction : 0.3~1.5 /cm2/s (17.3MeV threshold)

Current SRN searches

Expected sensitivity of SK-Gd preliminary

Model	10-16MeV (evts/10yrs)	16-28MeV (evts/10yrs)	Total (10-28MeV)	Significance (2 energy bin)
HBD 8MeV	11.3	19.9	31.2	5.3 σ
HBD 6MeV	11.3	13.5	24.8	4.3 σ
HBD 4MeV	7.7	4.8	12.5	2.5 σ
HBD SN1987a	5.1	6.8	11.9	2.1 σ
BG	10	24	34	10

 v_e CC BG become 2/3

)n)

NC elastic BG 1/3

total bkgd

18

20

22

0.4

0.3

0.2

0.1

0 10 N 150/a

14

12

16

Model	10-16MeV (evts/10yrs)	16-28MeV (evts/10yrs)	Total (10-28MeV)	Significance (2 energy bin)
HBD 8MeV	11.3	19.9	31.2	5.3 σ
HBD 6MeV	11.3	13.5	24.8	4.3 σ
HBD 4MeV	7.7	4.8	12.5	2.5 σ
HBD SN1987a	5.1	6.8	11.9	2.1 σ
BG	10	24	34	11

 3σ discovery with 10 years observation

24

Position Energy (MeV)

26

28

Improvement of SN pointing accuracy

By tagging IBD with Gd signal, v-e scattering signal can be extracted.

Pointing accuracy for SN at 10 kpc. Improvement; $4 \sim 5^{\circ} \rightarrow \sim 3^{\circ}$ (90%C.L.)

Improvement for Proton decay

Neutron multiplicity for

If one proton decay event is observed at Super-K after 10 years Current background level: 0.58 events/10 years Background with neutron anti-tag: 0.098 events/10 years

Background probability will be decreased from 44%(w/o n) to 9%(w/ n).

T2K/Atomospheric neutrinos

Number of neutrons from a neutrino interaction in T2K energy range

 v_e and \bar{v}_e separation using number of neutrons : ~70% 14

R&D to realize SK-Gd

R&D items

- Gd water transparency must be similar to SK water
- Effect of Gd to detector materials
- Effect of Gd water quality to physics analysis
- Reduction of radioactive backgrounds in Gd powder
- How to stop leak of SK detector (Next talk)

EGADS Evaluating Gadolinium's Action on Detector Systems 200 m³ tank with 240 PMTs

Transparency measurement (UDEAL)

15m³ tank to dissolve Gd

Gd water circulation system (purify water with Gd)

EGADS detector: Baby-Kamiokande

One of main goals for EGADS is to study the Gd water quality with actual detector materials. Thus, the detector fully mimic Super-K detector. : SUS frame, PMT and PMT case, black sheets, etc.

Gd dissolving test has been performed since Oct.2014. and finished Apr. 2015

Transparency of Gd water with PMTs

EGADS inspection after ~3years of GD water operation

EGADS tank looks fine. We did not find large source of rust. The stainless steel supports look shining.

Inside of FRP covers

Average capture time; Data 29.9 \pm 0.3 [µsec], MC 30.0 \pm 0.8 [µsec]

Super-K performance checks

- SK detector simulation with water transparency in 0.2% Gd sulfate period
- High energy reconstructions
 - Atmospheric / T2K
- Low energy reconstructions
 - Solar / SRN

Effect on High energy (atm.v, T2K)

	Pure water	Gd water					
Momentum resolution							
electron (500MeV)	4.9%	4.9%					
muon(500MeV)	2.5%	2.5%					
Miss-PID(%)							
muon(500MeV)→e-like	0.59 ± 0.12	1.00 ± 0.15					
π ⁰ (500MeV)→ T2K1Re	4.7±0.3	6.1 ± 0.4					
Number of T2K events (nu	u-mode 3.9*10 ²¹ I	POT)					
Appearance signal	98.5	97.7					
Appearance BG	24.6	25.2					
Disappearance signal	622.2	623.8					
Disappearance BG	45.6	48.6					

1000

 15.8 ± 0.7

fiTQun L π^0 /Le

1000

 75.7 ± 1.8

 77.7 ± 1.8

24

 16.7 ± 0.7

Effect on Low energy (solar v, SRN)

Ultra high purity Gd production

Impact to the physic analysis

Spectrum of solar neutrino sample Below 5MeV, it is dominated by radioactive BG. Spontaneous fission of 238 U with γ and n will be BG in SRN search.

Requirement of RI in Gd powder

Requirement for each isotope

Unit: $mBq/kg(Gd_2(SO_4)_3)$

lsotope	SRN	Solar	Before 2015
238U	< 5	-	50
226Ra	-	< 0.5	5
232Th	-	< 0.05	
228Ra	-	< 0.05	10
228Th	-	< 0.05	100
235U	-	< 3	32
227Ac/Th	-	< 3	300

1/10 ~ 1/1000 reductions were needed!

R&D of clean Gd

Researchers : Evaluation of "ultra low" RI. Company side : make sample based on our input

- Ge detectors
 - Easy to make samples
 - Many detecors (Kamioka, Canfranc, Boulby)
 - Good sensitivity: < 0.5 mBq/kg (Gd2(SO4)3 8H2O) for Ra/Th
 - Can check whole decay chain
- ICP-MS
 - Super high sensitivity Th~0.1 mBq/kg(Gd2(SO4)3•8H2O)
- Rn emanation
 - Racan be measured at ~0.1mBq/kg

Ge detectors

- We can do parallel measurements at Kamioka, Canfranc, Boulby.
 - Please see following talks.
 - In Kamioka, one of Ge detectors is always running for SK-Gd sample.
- High sensitivity for Ra226.
- High sensitivity measurement in Kamioka is under development.

One of Ge detector In Kamioka (LabA)

High sensitivity measurement in Kamioka

- In Kamioka, Ichimura san is developing high sensitivity measurement.
 - Sample amount : 8kg (before <1kg)
 - Sensitivity for Ra226 : < 0.4mBq/kg with 12 days
- Ge detector in Canfranc:
 - Sample amount ~5kg
 - Long term (> 1month) measurement
 - Sensitivity for Ra 226:
 <0.2 mBq/kg

*More improvements for the shield structure will be done so that we can put larger amount of samples

* Ra concentration by resin is under development by Ito san (Okayama) and Ichimura san $$_{\rm 31}$$

Evaluation of super-low level U/Th

- S. Ito san has developped a method to measure superlow level U/Th in Gd powder
- Requiements:

238U < 400ppb (5mBq/kg), 232Th< 12ppt (0.05mBq/kg)

- Separation and extraction of U/Th from Gd solution using resin
 - To remove matrix effect of Gd
 - S.lto et al. PTEP 2017 113H01

Auto-sampler is covered by clean booth.→Class 100

R&D of super pure Gd sulfate powder

• Radio impurity measured w/ two methods:

Ge detector: Sensitive to almost 0.1 mBq/kg (Canfranc, Boulby and Kamioka) ICPMS: For isotopes w/ long life (Kamioka) * Goal for 0.2% Gd-sulfate, loading

Chain	lsotope	Typical	Goal*	Company A		Company B		Company C	
Chain				Ge	ICPMS	Ge	ICPMS	Ge	ICPMS
2381 1	²³⁸ U	50	< 5	-	~ 0.04	< 11	< 0.04	< 10	< 0.04
0	²²⁶ Ra	5	< 0.5	-	_	<0.2		< 0.2	
	²³² Th	100	< 0.05	-	~ 0.09		0.02	—	0.06
²³² Th	²²⁸ Ra	10	< 0.05	-		< 0.3		< 0.2	
	²²⁸ Th	100	< 0.05	-		< 0.3	_	< 0.3	_
2351 1	²³⁵ U	30	< 3	-		< 0.4		< 0.3	
0	²²⁷ Ac/Th	300	< 3	-		< 1.7		< 1.2	

Unit: [mBq/kg (Gd₂SO₄)₃ 8H₂O]

Company B achieved goals for U, 226Ra and 232Th

First mass production of ultra high purity Gd sulfate Kamioka mine @2018/12/21

Quality check by company

- Production of 1.5 t has been finished
 - 0.5 ton × 3 batches
 - For each batch, the production company checked its quality.
 - They confirmed that all 3 batches meet our specifications

Elemen	ts Specification	batch1 batch2		batch3		
U	< 0.4 ppb*	< 0.4 ppb	< 0.4 ppb	< 0.4 ppb		
Th	< 0.013 ppb*	< 0.013 ppb	< 0.013 ppb	< 0.013 ppb		
		[0.011ppb]	[0.004ppb]	[0.004ppb]		
Ce	< 0.05 ppm	< 0.01 ppm	< 0.01 ppm	< 0.01 ppm		

*Correspond to 238U < 5mBq/kg, 233Th < 0.05 mBq/kg No specification for Ra because they cannot measure it ³⁵

Quality check at Kamioka

Goal (mBq/kg)		Bach 1	Bach 2	Batch 3
238U < 5	ICPMS	< 0.02	0.02	0.04
	Ge	<9.45	<9.89	<28.4
232Th< 0.05	ICPMS	0.04	0.02	0.04
	Ge	<0.20	<0.21	0.16
226Ra< 0.5	Ge	0.46 ± 0.24	<0.33	<0.20

ICPMS by Ito san(Okayama U), Ge by Ichimura san (ICRR)

We confirmed 226Ra is also less than our requirement.

Further reduction of RI with ion exchange resin

For Ra and U

- In $Gd_2(SO_4)_3$ solution, Ra^{2+}
- In case of pH $\geq \sim 6$, U forms UO₂(SO₄)₃⁴⁻

They should be removed by ion-exchange resin. For SK-Gd, resin must not remove Gd³⁺ and SO₄²⁻

- U : Anion-exchange resin
 - We confirmed U can be removed by this resin.
- Ra: Cation exchange resin
 - Test of Ra removal using Ra rich water.
 - Test for ~mBq/m3 level, we need low BG resin.

Ra removal by resin using Ra rich Gd water (~500Bq/m³)

- Red: w/o resin. Blue/Green: resin 1 pass
- Reduction of 3 order of magnitude in 0.2% Gd₂(SO₄)₃

Blue: usual cation exchange resin, Green: special resin which doesn't remove Gd

New Cation exchange resin using low RI Gd-sulfate

Test in EGADS is on going (water transparency), Ra removal test will be done soon.

Summary

- Main R&D of SK-Gd project has been finished.
 - EGADS started in 2009 to evaluate Gd effect to SK.
 - In 2015, we achieved resolving 0.2% (target value) of Gd sulfate after PMT installation without a large loss of water quality.
 - Almost 3 years of Gd water period,
- Current status and plan of SK-Gd will be presented by Nakajima san.
- Let's enjoy neutron tagging physics with SK-Gd!