第32回ニュートリノ研究会, ICRR, March 23 2019

Diffuse supernova neutrino background (DSNB) predictions and discovery potential

Shunsaku Horiuchi Center for Neutrino Physics Virginia Tech

Office of Science

Image credit: NASA/ESA

Stars explode EVERYDAY

Distance scales and physics outcomes

	Galactic burst	Mini-bursts	Diffuse signal
Physics reach	Explosion mechanism, progenitor properties, multi-messenger astronomy, neutrino physics	supernova variety	Average emission, multi-populations (e.g., black holes)

Diffuse Supernova Neutrino Background

Diffuse Supernova Neutrino Background

Input 1: neutrino emission

Neutrinos from core collapse

Each core collapse releases $\sim 3 \times 10^{53}$ erg of neutrinos, of which $\sim 1/6$ is in anti- v_e Time-integrated emission is typically $T_v = 4 - 5$ MeV or so

Fischer et al (2010) Shunsaku Horiuchi (VT)

Collapse to black holes

Neutrinos from collapse to black hole

Black hole formation necessarily goes through high mass accretion $\rightarrow v$ emission is more luminous and hotter (quantitatively depends on EOS) Nakazato-san talk

Liebendoerfer et al 2004; many studies, e.g., Fischer et al 2009, Sumiyoshi et al 2006, 2007, 2008, 2009, Shunsaku Horiuchi (VT) Nakazato et al 2008, 2010, O'Connor & Ott 2011, ...

Core-collapse diversity

Sophisticated simulations [no systematic studies yet]

- 3D with neutrino transport
- Few progenitor models
- Address: explosibility, neutrino and gravitational wave signals

World-wide: groups in Japan, Australia, Germany, Poland, Sweden, USA, ...

First systematic studies in spherically symmetry

- Spherically symmetric with parameterized neutrino heating
- ~700 models, GR gravity, varied progenitor, EOS, etc

O'Connor & Ott (2011, 2013), Ugliano et al (2012), Pejcha & Thompson (2015), Ertl et al (2015), Summa et al (2016), Sukhbold et al (2016), Mueller et al (2016), ...

Systematic study in axis-symmetry

- Axis-symmetric with simplified neutrino transport
- ~400 progenitor models, Newtonian, single EOS

Nakamura et al (2014), Summa et al (2016)

Supernova diversity

Systematic studies: thinking in mass looks incomplete

Janka 2017; see also O'Connot & Ott (2011), Pejcha & Thompson (2015), Sukhbold et al (2016), Mueller et al (2016)

Compactness: a useful indicator

Compactness:

Captures the density structure of the progenitor, which impacts mass accretion evolution

O'Connor & Ott (2011)

- Higher $\xi \rightarrow$ higher Mdot \rightarrow harder to explode
- Lower $\xi \rightarrow$ lower Mdot \rightarrow easier to explode

Compactness: a useful indicator

Compactness:

Captures the density structure of the progenitor, which impacts mass accretion evolution

O'Connor & Ott (2011)

- Higher $\xi \rightarrow$ higher Mdot \rightarrow harder to explode \rightarrow fails earlier
- Lower $\xi \rightarrow$ lower Mdot \rightarrow easier to explode \rightarrow a little harder to fail

$$_{M} = \left. \frac{M/M_{\odot}}{R(M_{\text{bary}} = M)/1000 \,\text{km}} \right|_{t}$$

Islands of "un-explodability"

Failed explosions appear in islands, and correspond to stars with large compactness

A critical compactness?

1 compactness successful in ~88% of progenitors

Pejcha & Thompson (2015), Ertl et al (2015)

Multi-dimensional simulations?

- Critical compactness $\xi_{2.5} \sim 0.2$ is consistent with axisymmetric simulations
- Critical compactness in 3D simulations still TBD

Horiuchi et al (2014)

Mixture in between

Shunsaku Horiuchi (VT)

Correlations in systematic 2D simulations

Neutrino emission spectrum

Supernova neutrino spectral area well fit by a pinched spectrum (3 parameters)

Shunsaku Horiuch

Time-integrated neutrino signal

Systematic dependence on compactness

- Spectral parameters (E_{tot} , E_{ave} , α_{pinch}) of time-integrated spectra
- From 100+ simulations of Nakamura et al 2015, 18 simulations of Summa et al 2016, and multiple BH simulations.

Horiuchi et al (2018)

Mean neutrino emission

Weighted mean neutrino emission

- Include diversity (by progenitor compactness)
- Include distribution of stellar properties (by initial mass function)
- Include NS and BH channels (by a <u>critical compactness</u> parameter)
- Include neutrino oscillations (MSW mixing; hierarchy dependent)

Diffuse Supernova Neutrino Background

Input 2: Developments

Data sparse

Use the DSNB to constrain the corecollapse rate and/or the star formation rate

Strigari et al (2004); Fukugita & Kawasaki (2003), Ando (2004), Hopkins & Beacom (2006), ...

Developments in recent decade

Fortunately, important updates by our astronomer colleagues

- ✓ More direct measurements
- ✓ Better direct measurements
- ✓ Better systematic confirmations
- ✓ New searches of `dark' collapse

Strigari et al (2004)

Cosmic core-collapse rate

Direct measurements

Two different strategies:

- Efficient but Biased: target pre-selected galaxies, e.g., LOSS, STRESS
- Unbiased but harder: target pre-selected fields, e.g., SNLS, HST-ACS, SDSS, DES, ...
- Measurements improving

Future measurements coming up (ASAS-SN, DES, LSST)

e.g., Lien & Fields (2009)

Horiuchi et al (2011)

Cosmic birth rate of stars

Shunsaku Horiuchi (VT)

Birth & death rate comparison

Birthrate of massive stars Defined as 8 – 40 Msun stars

Observed supernova rate Gives the observed corecollapse rate, probed by observations of <u>luminous</u> supernovae.

(Birth rate) - (supernova rate)
= collapse to black hole?
Nominally the fraction looks to
be approximately 50%

...but we must be careful

Horiuchi et al (2011)

Is the birth rate artificially high?

Cosmic stellar birth rate density \rightarrow \rightarrow \rightarrow \rightarrow Extragalactic background Light

Horiuchi & Beacom (2010) Many updates, e.g., Yuksel+ (2008), Madau & Dickinson (2014)

No evidence of birth rate being too high Horiuchi et al (2009) Many updates, e.g., Gilmore et al (2012)

Shunsaku Horiuchi (VT)

Are the rates systematically low/high?

Uncertainties

Sizable, but most are not enough to explain factor 2 difference

Only 1 remains large enough: missing dim supernovae

Dim supernovae

Dim supernovae

Supernova rate measurements have similar rest-frame luminosity cut off

sensitivities

Local (within ~ 13 Mpc) supernovae

SN	Galaxy	Туре	D (Mpc)	E(B-V)	Absolute Magnitude ^a	Discovery Phase
SN 2002bu	NGC 4242	IIn ^b	5.8	0.012	$M_{R} \approx -14.1$	Early
SN 2002hh	NGC 6946	IIP	5.9	0.342	$M_R\approx -14.3$	Early
SN 2002kg	NGC 2403	LBV	3.2	0.04	$M_V \approx -9$	Not CC SN
SN 10/21:	falls below se	ensitiv	vity cut	of cosmi	c supernova rate	e studies
SN 2004et	NGC 6946	IIP	5.9	0.342	$M_R \approx -17.6$	Early
SN 2005af	NGC 4945	IIP	3.6	0.177	$M_{I\!\!R} \sim -15.4$	1 month
SN 2005at	NGC 6744	Ic	7.1	0.043	$M_R \sim -15.1$	2 weeks
SN 2008bk	NGC 7793	IIP	4.1	0.019	$M_R \sim -15.5$	1 month
SN 2008iz	NGC 3034 (M82)	II?	3.5	0.159	no optical	Radio only
SN 2008S	NGC 6946	IIn ^b	5.9	0.342	$M_R\approx -13.3$	Early
NGC 300-OT	NGC 300	IIn ^b	1.9	0.013	$M_V \sim -12.3$	1 month
SN 2002ap	NGC 0628	IcPec	9.0	0.07	$M_R \approx -17.8$	Early
SN 2003gd	NGC 0628	IIP	9.0	0.07	$M_R \sim -16.7$	2 months
SN 2005cs	NGC 5194 (M51)	IIP	8.4	0.035	$M_{R} \approx -15.4$	1 month
SN 2007gr	NGC 1058	Ic	9.9	0.062	$M_R \approx -17.4$	Early
SN 2008ax	NGC 4490	IIb	9.6	0.022	$M_R \approx -16.6$	2 weeks
SN 2009hd	NGC 3627 (M66)	IIP	8.3	0.032	$M_R \approx -13.9$	Early
SN 2001ig	NGC 7424	IIb	11.5	0.011	$M_R \approx -17.3$	Early
SN 2003ie	NGC 4051	п	12.2	0.013	$M_R < -15.6$	Uncertain
SN 2003jg	NGC 2997	Ibc	11.3	0.109	$M_R \sim -14.1$	Few weeks
SN 2007it	NGC 5530	IIP	11.7	0.116	$M_V \approx -18.7$	Early
SN 2008eh	NGC 2997	Ibc?	11.3	0.109	$M_R \sim -15.3$	1 month
SN 2009ib	NGC 1559	IIP	12.6	0.03	$M_R\approx-15.9$	Early

Dim supernova

Missing dim supernovae

Fraction of dim supernovae are much smaller in surveys than they are locally

The reason:

Most of the locally dim supernovae are heavily dust attenuated objects.

Mattila et al (2012), see also Mannucci et al (2007)

further de-biasing

Di-biased cosmic supernova rates

Better agreement

Updated from Horiuchi et al (2011)

Graur et al (2015)

Shunsaku Horiuchi (VT)

Failed fraction could be large

Multiple circumstantial evidence for a large fraction of failed explosions.

Insight for compactness:

All of these can be explained by a critical compactness $\xi_{2.5} \sim 0.2$ (i.e., explosions $\xi_{2.5} < 0.2$ and fails for $\xi_{2.5} > 0.2$)

#1. Cosmic supernova rates

Recent updates <u>with</u> and <u>without</u> correction for heavily dust attenuated supernovae suggests BH fraction ~10-30%

Connection to compactness

This corresponds to 10^{-1} \rightarrow compactness $\xi_{2.5} > 0.2$ or so 0.2 failed fracion (ξ 0.5 0.40.3 0.2 0.10 0.1 0.2 0.3 0.40 $\xi_{2.5,crit}$

Horiuchi et al (2014)

#2. Red supergiant problem

Smart et al (2001), Van Dyk et al (1999),

Smartt (2009), Smartt (2015)

#2. Red supergiant problem

Smart et al (2001), Van Dyk et al (1999),

Smartt (2009), Smartt (2015)

#2. Red supergiant problem

Supergiants may not be exploding

Observationally, these red supergiants have mass ${\sim}16$ –25 Msun

Smartt et al (2009)

Connection to compactness

- Mass range is supergiants with the highest compactness
- Consistent with stars with $\xi_{2.5} > 0.2$ or so failing to explode

Horiuchi et al (2014); Kochanek (2014)

(Other explanations have been explored)₃₂

#3. Black hole mass function

Compact object mass function: There are hints of a dearth of stellar black holes just above the NS mass range

Connection to compactness Critical compactness $\xi_{2.5}$ ~0.2 yields a cutoff in the black hole mass function

e.g., Kreidberg et al. (2012), Kizeltan et al. (2013) Shunsaku Horiuchi (VT)

Kochanek (2014); also Sukhbold et al (2016), etc

#4. Searches of failed explosions: Survey about nothing

Survey About Nothing

Look for the disappearance of red-supergiants in nearby galaxies caused by core collapse to black holes

Monitor \sim 27 galaxies with the Large Binocular Telescope

- → Survey ~10⁶ red supergiants with luminosity sensitivity > 10⁴ Lsun
- \rightarrow expect ~1 core collapse /yr
- → In 10 years, sensitive to 20 30% failed fraction at 90% CL
 Kochanek et al. (2008)

Potential failed explosion: Gerke et al. (2015)

- 6 luminous CC supernovae (SN2009dh, SN2011dh, SN2012fh, SN2013ej, SN203em, SN2014bc)
- 1 candidate failed supernova: NGC6946-BH1 (@~6Mpc); SED well fit by 25Msun RSG
- Failed fraction 4 43% (90%CL)
 Critical compactness ~0.2 0.3

Adams et al (2017)

Flux prediction

- \checkmark We know there are many core collapse in the past
- ✓ We know core collapse emits copious neutrinos
- ✓ We know both of these <u>quantitatively</u>
- ✓ We expect some (maybe sizable) collapse to form black holes

Diffuse Supernova Neutrino Background

Neutrino detectors

- Detector must be massive Optically thin -- needs large volumes
- Detector must be "quiet" Built with low natural radioactivity and with plenty of shielding
- Detector better to have background rejection
 Built with capabilities to distinguish between signal and background events

Super-K with Gadolinium

Background rejection:

In water Cherenkov the signal produces a neutron, while backgrounds typically do not

Beacom & Vagins (2004)

After many R&D tests and studies, upgrade ongoing!

EGADS: Evaluating Gadolinium's Action on Detector Systems

Backgrounds and search window

Optimal search window

Dependent on the relevant backgrounds.

Neutrinos:

- Reactor neutrinos
- Atmospheric neutrinos

Mimicking neutrinos:

- Invisible muon decays
- Spallation products which can be reduced by Gd

→ Window is ~10-25 MeV with Gd

Present limits

Search with Super-Kamiokande

Already excluding large energetics & neutrino energy

Upcoming sensitivity

Search with Super-K + Gadolinium

Transforms into signal dominated search with wider energy window. Will probe emission parameters.

Spectrum	H2O (18 MeV threshold) K [/yr]
4 MeV	0.4 +/- 0.1
4MeV +30% BH	1.1 +/- 0.3
SN1987A	0.5 +/- 0.1
Spectrum	H2O + Gd (10 MeV threshold) [/yr]
Spectrum 4 MeV	H2O + Gd (10 MeV threshold) [/yr] 1.8 +/- 0.5
Spectrum 4 MeV 4MeV +30% BH	H2O + Gd (10 MeV threshold) [/yr] 1.8 +/- 0.5 3.0 +/- 1.0

Yuksel et al (2006)

DSNB: future

Rate uncertainty Will reduce with next-generation supernova surveys (e.g., LSST; 2023~)

Hyper-Kamiokande

Can be sensitive to small values of critical compactness, $\xi_{2.5} < 0.2$

DSNB: future

Rate uncertainty Will reduce with next-generation supernova surveys (e.g., LSST; 2023~)

Hyper-Kamiokande

Can be sensitive to small values of critical compactness, $\xi_{2.5}$ < 0.2

Concluding remarks

Theory: supernova neutrino background is a guaranteed signal

- ✓ We know core collapse occur regularly in the Universe with constant updates from astronomers
- We know core collapse emits neutrinos from SN1987A, but also constant updates from theory, in particular the combination of state-of-the-art and systematic simulations

<u>Present</u>: excellent prospects for <u>detection</u>

- ✓ Gd upgrade at Super-K to deliver signal-limited search
- ✓ Can provide emission parameter estimates in 5-10 years

<u>Future</u>: signal probes new populations, e.g., <u>black hole formations</u>

- ✓ Future high-statistics DSNB probes low critical compactness
- Benefit from ongoing new simulations, long-term simulations, core-collapse rate measurements, oscillation parameters, etc

BACKUP

Shunsaku Horiuchi (VT)

Time-integrated neutrino signal

Spectrum per core collapse

Spectral parameters from 100+ simulations: reveals systematic dependence on compactness

$$f_{\nu}(E) \propto E^{\alpha} e^{-(\alpha+1)E/E_{\rm av}}$$

$$\rightarrow$$
 ($E_{tot'}, E_{ave'}, \alpha_{pinch}$)

#4 The NGC6946-BH1 candidate

False positive?

New search will have new false positive \rightarrow multi- wavelength follow-up is needed to vet failed SN candidates and determine whether the star survived or disappeared

Critical compactness in 2D and 3D

Explosions in 2D

• 378 models, axis-symmetric

Nakamura et al (2014)

- 2D setup is conducive to explosions
- Remnants above 2.4 Msun baryonic mass not realistic and may fail

Explosions in 3D

- No systematic simulations yet
- 3D explosions are more spherical and have later shock revival times than 2D
 - 27Msun progenitor with $\xi_{2.5} = 0.228$ explode (late) in 2D, but not in 3D.

Searches by Super-K

Shunsaku Horiuchi (VT)

SN1987A as an example

Shunsaku Horiuchi (Virginia Tech)

天文学会2016年春

25-orders magnitude neutrino spectrum

Extra-terrestrial Sources:

- Big bang relics (~10⁻⁴ eV)
- Solar neutrinos (~1 MeV)
- Core-collapse supernova neutrinos (~10 MeV)
- Gamma-ray bursts (>10 MeV)
- Active Galactic Nuclei (>1 GeV)
- Cosmogenic (~10¹⁵-10²⁰ eV)

Terrestrial sources

- Atmospheric neutrinos (>1 GeV)
- Geo-neutrinos (~1 MeV)