The 32nd SRN Workshop / Kashiwa, U. Tokyo / 23rd, March. 2019

Neutrino-Oxygen Neutral-Current Elastic Interaction as a Background in Supernova Relic Neutrino Search

> Yosuke ASHIDA (Kyoto University) for the T2K and Super-Kamiokande Collaborations

Introduction

SRN Search & NC Elastic Interaction

- "Neutron tagging" analysis is implemented to obtain higher sensitivity.
 - Delayed coincidence: e⁺ & γ from n capture
 - SK: 2.2 MeV gamma-ray by H (efficiency ~20%)
 - SK-Gd: ~8 MeV gamma-rays by Gd (efficiency ~80% @ 0.1%-Gd load)
- Many backgrounds can be reduced by neutron tagging, however, NC remains.
 - NC at $E_v > 200$ MeV usually involves nucleon knock-outs and mimics SRN signal.
 - NC is an irreducible background, so must be measured precisely (current: 100%!).

Measurement Probe

- NC elastic can be measured by adopting nuclear de-excitation gamma-rays as a signal (typical energy is <10 MeV).
- "Key" is to reduce large background in a low energy region.

Nuclear De-excitation Gamma-rays

- Probability of remaining nucleus having an excited state is calculated by Ankowski et al.
 based on the local density approximation (= spectroscopic strength).
- Basic three states (from the shell model) + *others* state;
 - (p_{1/2})⁻¹: no gamma emission
 - (p_{3/2})⁻¹: gamma emission (6.18 MeV, 6.32 MeV, etc)
 - $(s_{1/2})^{-1}$: particle (p, n, α , etc) decay + gamma emission
 - *others*: **short range correlation** or higher excited state

Model or MC version	p 1/2	p 3/2	\$ 1/2	others
Simple shell model	0.25	0.50	0.25	0
Ankowski et al.	0.158	0.3515	0.1055	0.385

A. M. Ankowski, Phys. Rev. Lett. 108, 052505 (2012)

Measurement with Atmospheric Neutrinos

L. Wan et al. (Super-Kamiokande Collaboration), Phys. Rev. D 99, 032005 (2019)

Super-Kamiokande

- Large water Cherenkov detector scaling ~40 m in diameter and ~40 m height.
- \sim 11,000 20-inch PMTs used to detect Cherenkov photons emitted by charged particles.
- Running since 1996; Run after October/2008 has a neutron tagging capability.
- Data between October/2008 and October/2017 is used in the analysis.

Measurement Method

- Basically SRN analysis cut is applied in order to reduce large backgrounds (Neutron tagging is also applied).
- Different from SRN IBD, NCQE is expected to involve many gamma-rays via secondary neutron interactions. This leads to larger reconstructed Cherenkov angle (angle cut).

Cross Section Result

$$\begin{split} \langle \sigma_{\text{NCQE}}^{\text{observed}} \rangle &= \frac{N_{\text{tot}}^{\text{obs}} - N_{\text{acc}}^{\text{exp}} - N_{\text{others}}^{\text{exp}} - N_{\text{NCOthers}}^{\text{exp}}}{N_{\text{NCQE}}^{\text{exp}}} \times \langle \sigma_{\text{NCQE}}^{\text{theory}} \rangle \\ &= (1.01 \pm 0.17_{\text{stat.}}) \times 10^{-38} \text{ cm}^2, \end{split}$$

TABLE III. Predictions of components in the final data sample and the comparison with signal MC.

Components		Events
NC single π	Signal purity ~ 58%	33.4
NC multi- π 's		4.2
DIS		0.0
$\bar{\nu}_e$ CC		0.4
$\bar{\nu}_{\mu}$ CC		0.8
Accidental		13.7
Spallation		0.5
Reactor		0.1
Total background		53.1
Observed data		117
Background subtracte	d data	63.9
NEUT NCQE predict	ion	71.9

Systematic Uncertainty

- Neutrino flux (HKKM model) error is large.
- Neutron-related errors are very large.
- Final systematic error size is +77.2/–29.7%, while statistical error is ±16.8%.

Comments on SK Measurement

• Atmospheric neutrino is used with almost the same cuts as SRN analysis, then a direct comparison is possible.

- Very large systematic error (flux, neutron tagging, still large background).
- Large statistical error even with ~ 10 years data.
- Inclusive measurement for neutrino and antineutrino, thus not ideal from a stand point of neutrino interaction study.
- Cherenkov angle cut strongly depends on the secondary nuclear interaction model (bias?).

K. Bays et al. (Super-Kamiokande Collaboration), Phys. Rev. D 85, 052007 (2012)

Measurement with T2K Neutrino Beams

K. Abe et al. (T2K Collaboration), Phys. Rev. D 90, 072012 (2014) $+\alpha$

T2K Experiment

- T2K is a long baseline neutrino experiment.
 - Beam produced at J-PARC (8 bunch beam structure being separated by 581 ns), and detected at 295 km away Super-Kamiokande.
 - Two operation modes: neutrino-dominant (FHC) or antineutrino-dominant (RHC)
 - Flux peak ~630 MeV is close to the atmospheric neutrino flux peak.
- Use FHC 3.07×10^{20} protons-on-target data in the analysis.

Atmospheric vs. T2K Beam Neutrino Flux

Neutrino Beam

- Neutrino beam is simulated by FLUKA (hadronic interaction) + GEANT3 (transportation).
- Hadron interaction cross section and kinematics are tuned by NA61/SHINE data.

Measurement Method

- By using beam timing information, large part of backgrounds can be removed.
- Energy threshold can be lower than the atmospheric case (7.5 MeV \rightarrow 4 MeV).
- Furthermore, cut parameters are optimized by using MC and off-timing data.
- In the final sample, only 2% beam-unrelated events are contaminated.

Cross Section Result

 $<\sigma_{\nu,NCQE}^{obs}>=1.55\pm0.395(stat.)^{+0.65}_{-0.33}(sys.)\times10^{-38}cm^{2}$

Systematic Uncertainty

	Signal	Background			
Fraction of sample	NCQE 68%	NC non-QE 26%	CC 4%	Unrel. 2%	
Flux	11%	10%	12%		
Cross sections		18%	24%		
Primary γ production	15%	3%	9%		
Secondary γ production	13%	13%	7.6%		
Detector response	2.2%	2.2%	2.2%		
Oscillation parameters			10%		
Total systematic error	23%	25%	31%	0.8%	

- Flux error is smaller than the atmospheric case.
- Large error on primary- γ production (mainly on *others* state because of no data).
- Second dominant is secondary- γ production. A gap is seen in large Cherenkov angle region.

Comments on T2K Measurement

- Smaller background and well-known flux (\rightarrow better precision).
- Larger statistics with an intense beam.
- Neutrino and antineutrino cross sections can be measured separately.

• No neutron tagging (as of now), then different phase space is seen from SRN (?).

Updates On-going ...

- Larger statistics (×5 for FHC) & additional RHC data. ٠
- WORK-IN-PROGRESS Reduced systematic error by referring to latest data (~60% of the previous result). ٠
- By treating both data set simultaneously, the systematic error can be constrained. ٠

Number of expected events (fraction)	All	nu NCQE	nubar NCQE	NCother	СС
T2K Run1-9 FHC	243.3	180.1 (74.0%)	4.9 (2.0%)	46.2 (19.0%)	12.1 (5.0%)
T2K Run1-9 RHC	95.7	18.3 (19.2%)	57.2 (59.8%)	17.1 (17.9%)	3.0 (3.1%)

Summary

- Understanding of neutrino-oxygen NC elastic interaction is important especially in the phase of SK-Gd to improve SRN sensitivity.
- SK atmospheric neutrinos and T2K beam neutrinos can be used to measure such interaction.
- Results from both experiments and merit/demerit are shown.
- T2K updated measurements will come very soon!
- Possible updates;
 - Error reduction by RCNP measurements (<u>Next talk</u>)
 - Neutron tagging analysis
 - Separation between NC and IBD in vertex difference in the phase of SK-Gd (?)

Backup Slides