Introduction

小汐由介 (岡山大学)

第32回ニュートリノ研究会 2019年3月23日 東京大学宇宙線研究所

超新星背景ニュートリノ (歴史)

- 最初に指摘されたのは1960年代
- 1980年代になって計算がなされた
- Kamiokande で初めて観測による上限 値がつけられた (1988年)
- SKでの観測 (2003年, 2012年)
- Ando and Sato (2004年)の理論予測
- 現在では詳細な理論計算がされている。

超新星背景ニュートリノ探索

- ・約10秒間バースト的に発生する超 新星爆発ニュートリノと異なり、 常に漂っているフラックスの小さ い信号の探索になる。したがって バックグラウンド事象との識別が 鍵となる。 ・等方的に発生することから、水チェ レンコフ検出器での太陽ニュート リノ弾性散乱事象との区別には、 方向情報が使える。 ・液体シンチレータ検出器の場合は、
- 同時遅延計測手法が太陽ニュート リノとの区別に使える。

超新星背景ニュートリノ探索

実験	発表年	検出器タイプ	有効体積	測定日数	エネルギー 領域
Kamiokande	1988	水	680 ton	1040 days	20~50 MeV
LSD	1992	液体シンチレータ	90 ton	847.3 days	20~50 MeV
Super-K	2003 2012	水	22500 ton	1496 2853	18~34 16~100
SNO	2006	重水	770 ton	306.4 days	21~35 MeV
(Borexino)	2011	液体シンチレータ	270 ton	736 days	1.8~17.8 MeV
KamLAND	2012	液体シンチレータ	700 ton	2343 days	8.3~31.8 MeV

Kamiokande (1988)

1.6 事象 1.3 事象

ニュートリノ研究会

Kamiokande (1988) フラックス(単位面積・単位時間あたりの数) の上限値 $F_{\nu} < \frac{n_p}{TN_p\epsilon\sigma}$ 780/cm²/sec at 90%C.L. for T=4MeV

2019年3月23日

LSD (1992)

同時遅延計測を用いた逆ベータ崩壊事象の探索

Fig. 8. Upper limits to the integral fluxes of neutrinos of different flavours.

ニュートリノ研究会

LSD (1992)

フラックスの上限値

SNO (2006)

荷電カレント反応 (CC) を探索 $\nu_e + d \rightarrow p + p + e^-$ ($\overline{\nu_e}$ ではない)

フラックスの上限値

DSNB FLUX PREDICTIONS AND LIMITS

	INTEGRAL FLUX (cm ⁻² s ⁻¹)		FLUX 22.9 MeV $< E_{\nu} < 36.9$ MeV $(\text{cm}^{-2} \text{ s}^{-1})$	
Model	Prediction	Upper Limit	Prediction	Upper Limit
	Beacom &	Strigari (2006)		
<i>T</i> = 4 MeV	21.1	1.1×10^{4}	0.19	93
T = 6 MeV	14.1	1.5×10^{3}	0.66	72
T = 8 MeV	10.5	6.0×10^{2}	1.08	61
	Ando &	Sato (2003)		
NOR-L	28.5	1.3×10^{3}	1.49	69
NOR-S-INV	34.9	2.3×10^{3}	1.06	70

Note.—This table shows the 90% CL upper limits on the ν_e component of the DSNB flux and model predictions for different models from Beacom & Strigari (2006) and Ando & Sato (2003).

SNO (2006)

SNO (2004) (あえて) 反電子ニュートリノの探索 $\overline{\nu_e} + d \rightarrow n + n + e^+$

2つの中性子が付随する荷電粒子の探索すると2つの候補事象

$\bar{\nu}_e$ background			
Type of $\bar{\nu}_e$	expected coincidences		
Atmospheric	0.07 ± 0.01		
Reactor	0.019 ± 0.002		
Diffuse supernovae	≤ 0.005		
Geo-antineutrinos	0.0		
Total $\bar{\nu}_e$'s background	0.09 ± 0.01		
Non- $\bar{\nu}_e$ background			
Process	expected coincidences		
Atmospheric ν	$1.46^{+0.49}_{-0.45}$		
²³⁸ U spontaneous fission in detector media	< 0.79		
Accidental coincidences	$0.13 {}^{+0.06}_{-0.04}$		
^x O(n, γ) ^{x+1} O, where x = 17, 18	< 0.05		
Instrumental contamination (95% C.L.)	< 0.027		
13 C(α , ne^+e^-) 16 O (90% C.L.)	$< 1.7 \times 10^{-3}$		
Intrinsic:			
²¹⁴ Bi: $\beta - \gamma$ decay	$7.6 imes 10^{-5}$		
²¹⁰ Tl: $\beta - n$ decay	$\approx 10^{-8}$		
208 Tl: $eta - \gamma$ decay	$8.7 imes 10^{-4}$		
$\gamma \rightarrow \text{Compton } e^- + \text{photo-disintegration } n$	$<\!\!8 \times 10^{-4}$		
Total non- $\bar{\nu}_e$ background	$1.59^{+0.93}_{-0.45}$		
Total background	$1.68 {}^{+0.93}_{-0.45}$		

バックグラウンド期待値は 1.77 2019年3月23日

反電子ニュートリノの上限値 (超新星背景ニュートリノに限らず) 10^{5} 10^{4} 10^{3}

10

12

Neutrino Energy (MeV)

14

8

6

KamLAND (2012) 同時遅延計測を用いた逆ベータ崩壊事象の探索 8.3~31.8MeVのエネルギー領域で25個の候補事象

主なバックグラウンドは荷電粒子と中性子を発生する事象

$\begin{bmatrix} 12 \\ 10 \\ 8 \\ 8 \\ 6 \end{bmatrix}$	 KamLAND data accidental fast-neutron atmospheric v CC atmospheric v NC spallation 			大気こ Reaction $\overline{\nu_{\mu} + p \rightarrow \mu^{+} + n}$ $\overline{\nu_{\mu}}^{+12}C \rightarrow \mu^{+} + n^{+11}B$ $\nu_{\mu}^{+12}C \rightarrow \mu^{-} + n^{+11}N$ $\overline{\nu_{\mu}}^{+12}C \rightarrow \mu^{+} + n^{+11}B + \gamma$ $\overline{\nu_{\mu}}^{+12}C \rightarrow \mu^{+} + n^{+7}Li + \alpha$ $\overline{\nu_{\mu}}^{+12}C \rightarrow \mu^{+} + 2n^{+10}B$ Total	Lコートリ Number of Events 2.1 0.7 0.4 0.4 0.4 0.4 0.02 4.0±0.9	
$\begin{array}{c} \text{Structure} \\ \text{Structure} \\$	reactor BG + so (90% C) - - - - - - - - - - - - - - - - - - -	\overline{v}_{e} olar \overline{v}_{e} .L. upper limit) 25	30	大気二 Reaction $v(\overline{v})+^{12}C \rightarrow v(\overline{v}) + n+^{11}C + v(\overline{v})+^{12}C \rightarrow v(\overline{v}) + n+^{10}B + v(\overline{v})+^{12}C \rightarrow v(\overline{v}) + n+^{6}Li + v(\overline{v})+^{12}C \rightarrow v(\overline{v}) + n+^{9}Be + v(\overline{v})+^{12}C \rightarrow v(\overline{v}) + 2n+^{10}C$ Total	y - y - p - p - 2p	✓ (NC) Number of Events 13.2 1.4 1.4 0.3 0.1 16.4 ± 4.7

バックグラウンド期待値は 26.9±5.7

ニュートリノ研究会

2019年3月23日

ニュートリノ研究会

スーパーカミオカンデ

発見されたのか?

5万トン水チェレンコフ検出器(大容量は大きなアドバンテージ)

しかし遅延同時計測が使えないのでバックグラウンドが多く残り、 反電子ニュートリノそのものに対する感度はなかなか高くならない

超新星背景ニュートリノ探索ではバックグラウンドがほとんど ないところまでエネルギー閾値をあげ(18MeV)、さらにエネル ギースペクトル情報を使うことで探索感度を向上させる

超新星背景ニュートリノ探索ではバックグラウンドがほとんど ないところまでエネルギー閾値をあげ(18MeV)、さらにエネル ギースペクトル情報を使うことで探索感度を向上させる

ニュートリノ研究会

SK (2012)

解析手法の向上によりバックグラウンドを効果的に除去

SK (2012)

超新星背景ニュートリノのフラックス上限値

SK (2015)

しかし遅延同時計測が使えないのでバックグラウンドが多く残り、 反電子ニュートリノそのものに対する感度はなかなか高くならない

SK (2015)

同時遅延計測を使った反電子ニュートリノフラックスの上限値

まとめ

超新星背景ニュートリノの発見には至っていないが 理論予測値には近づいている