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Introduction to SK



  

Super­Kamiokande
● Atmospheric dataset provides access to wide range of L and E.
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Particle Identification

405 MeV 1.1 GeV 4.2 GeV 



  

Data Samples
Fully Contained

Up-going µPartially 
Contained



  

Sterile neutrino oscillation search



  

Introduction
● 4th (5th, 6th...) neutrino mass state in the eV-scale may participate in 

neutrino oscillation.

● Assuming 1 sterile, there is significant tension in current 
measurements (LSND, MiniBooNE, radioactive source, reactor).

PMNS

JHEP 1305 
(2013) 050



  

SK Approach
● Generally follow the approach in [1] with some simplifying 

assumptions for atmospheric sterile neutrinos.

– Mass difference is large enough that oscillations are “fast”,
i.e. the sin(L / E) term can be approximated by a constant.

– No νe-νs oscillations,  i.e. |Ue4| ~ 0.

– Complex phases are negligible.

● The validity of these assumptions is discussed in the backup.

● Firstly consider only 1 sterile, but in a way that can be easily extended 
at the end to N steriles (3+N neutrinos).

[1]  M. Maltoni and T. Schwetz, Phys.Rev. D76, 093005 (2007)



  

SK Approach
● Some care must be taken with “sterile matter effects”, e.g. the 

modified oscillation probabilities in the Earth:

– νe has CC and NC interactions

– νμ and  ντ have only NC interactions

– νs have no interactions

● Difficult computationally to calculate
sterile and standard (νe) matter effects
at the same time, so two fits are performed: 
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No-νe Fit Sterile Vacuum Fit

– Sterile matter effects

– Fit for |Uτ4|2 + |Uµ4|2

– Over-constrains |Uµ4|2

– νe matter effects

– Fit for |Uµ4|2 only

– Most accurate |Uµ4|2 

limit, but no |Uτ4|2 limit



  

• The νµ survival probability in the no-νe approximation (3+1):

●  P(2) represents the “standard” 2-flavour probability, plus the 
sterile matter effects

●  Usi can be written in terms of |Uτ4|2 and |Uµ4|2 in a 3+1 
framework.

Oscillation ProbabilityNo­νe Fit



  

• Standard oscillation - no sterile effects
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• With sterile effects

P(νµ to νµ) OscillogramNo­νe Fit
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PC through-going

Stopping Up-µ

Large |Uτ4|2

● Example distributions in some
of the more sensitive samples.

● The fit procedure minimizes 
over all systematic errors to find 
the best fit for each hypothesis.

● Exclusion regions are found 
using the distance in Δχ2 to the 
best fit point, and difference in 
dimensionality of the parameter 
space (Wilks' theorem).

Fit ProcedureNo­νe Fit



  

Limit:
    90 and 99% C.L. shown
    |Uτ4|2 < 0.23 at 99% C.L.

Best fit at:
|Uτ4|2 = 0.021
|Uµ4|2 = 0.012

Goodness-of-fit: 
χ2/dof = 531.1/480 (0.05)

Favors νµ to ντ oscillations 
over νμ to νs oscillations.

The |Uµ4|2 constraint is likely 
overestimated here.

Minos

CHDS+MB

SK

Solar

Recent
Global Fit

Unitarity Bound

ResultsNo­νe Fit



  

• Matter term becomes

• Extend to multiple sterile neutrinos with a sum over sterile 
species α

• Because it is a 2-level system, any number of sterile parameters 
reduce to 3: As, θs, |Uµ4|2

• We also make the results of this fit available in these parameters.

Extension to 3+NNo­νe Fit



  

Oscillation ProbabilitySterile Vacuum Fit

●  The νµ survival probability in 3+1:

● Here, P(3) is just the standard 3-flavor oscillation 
probability, including νe matter effects.

● Can't derive a limit for |Uτ4|2

● No oscillogram - just a drop in
normalization of all µ samples.

● Probability is not unique at each
L/E due to matter effects being
dependent on L and E
individually.



  

Fit ProcedureSterile Vacuum Fit

● Fit is then essentially systematics-
limited.

– The normalization of the e
samples are used to constrain
the normalization of the µ
samples more accurately.

● Best fit |Uµ4|2 = 0.016

– Figure shows the best fit
including minimization over
systematics (red line),
and the same sterile parameters
without shifting the systematics
(red dotted).



  

MiniBooNE
+SciBooNE
90% limit

SK

PRD86, 052009 (2012) 
JHEP 1305 (2013) 050

LSND &
MiniBooNE
appearance

Best fit: |Uµ4|2 = 0.016

|Uµ4|2 < 0.041 at 90% C.L.

|Uµ4|2 < 0.054 at 99% C.L.

Sensitivity: 0.024 at 90%

Results

● No strong sterile-driven 
νµ disappearance.

● Δχ2 of 1.1 between the 
best fit and no sterile 
neutrinos.

● Analysis is systematics 
limited.

Sterile Vacuum Fit



  

• The νµ survival probability in 3+N:

• Very similar to the 3+1 
formula with |Uµ4|2 → dµ

Extension to 3+NSterile Vacuum Fit



  

MeV sterile decay search



  

“Heavy” Sterile Neutrinos
● A state                  is separated from the oscillation effects.

● The phenomenology varies depending on the mass, and in some 
cases we may have observable decay products.

– For example, take 
● Motivated by e.g. νMSM - standard Seesaw mechanism, but 

Majorana masses       are chosen below electroweak scale.



  

MeV Sterile Decay
● Considering                                 , a heavy neutrino      that mixes with

       may be produced in atmosphere by    ,     , or     decay.

– We consider only the mixing parameter           as electron-mixing is 
already excluded at 2~3 orders of magnitude lower in this region, 
and atmospheric decay has negligible     component.

– Visible decay products, for example Super-Kamiokande can see 
the decay below, with two electron-like Čerenkov rings.

Cosmic ray

Atmosphere

SK

visible

invisible



  

Sterile Simulation
● Using Honda-flux atmospheric MC, events are reweighted by “sterile 

creation probability”, e.g. for muon decay:

– Neutrinos from pion and kaon decays also reweighted.

● Then track event probability to
decay inside of SK.

– Path-length dependency
 = zenith angle dependency



  

Fit Method
● The visible decay is a 3-body decay

(e+, e-, νμ) so we should see a
signal distribution (not peak) in the
invariant mass distribution of the 
e-like two-ring event sample.

– Figure shows MC truth.

● So we see signal in e+ e- invariant mass and zenith angle.
Background Signal

● Fit procedure similar to oscillation case (minimizing over systematics).



  

Results
● Compared to SK study by T. Asaka, our internal SK study uses the 

Honda-flux prediction and full knowledge of the detector and data-set. 
Contribution to steriles from Kaon-decay is also estimated.

● The final extracted limit is
still below CERN PS191.

● There are some easy
extensions to the
phenomenology for higher
masses ~ 400 MeV.

● Depending on the mass region,
need to consider phenomenology
more, but SK (and especially
HK) may have some good
search power regions.



  

Non Standard Neutrino 
Interactions



  

NSI ­ Introduction
● A very general model for non-standard neutrino interactions (NSI)

with matter can be introduced with the Hamiltonian

which represents respectively: the standard neutrino oscillation, the 
standard matter effect, and the NSI; for a flavour change να→νβ.

● The NSI matrix includes

– Flavour Changing Neutral Current
(FCNC, the off-diagonal εxy).

– Lepton Non-Universality
(NU, the on-diagonal εxx).

● Motivations from R-parity violating SUSY, neutral heavy leptons...



  

SK Search
● Two methods are adopted that can simultaneously test NSI and 

neutrino oscillation in the atmospheric data.

● Two-flavour approach

– NSI coexists with the dominant νμ↔ντ atmospheric oscillations.

– νe is completely decoupled and ignored (no MSW effect).

● Constrains εμμ, εμτ, and εττ. 

● Three-flavour “hybrid” approach

– νμ↔ντ atmospheric oscillations and νe↔ντ NSI.

● Constrains εee, εeτ, and εττ. 



  

Two­Flavour approach
● Following [2], assuming NSI is dominated by d-quark interactions,

we define ε = εμτ (FCNC part) and  ε' = εττ - εμμ (NU part).

● Survival probability is somewhat complicated (backup), but we have 
an effective mixing angle Θ and oscillation wavelength correction 
factor R, which are dependent on ε, ε' and the neutrino energy E.

● Predicted effect thus in different samples for ε (FCNC) and  ε' (NU): 

[2] M. C. Gonzalez-Garcia and M. Maltoni Phys. Rev. D 70, 033010 (2004)



  

Two­flavour Results
● Best fit information:

● ε (FCNC) limits are tighter
compared to other experiments,
while ε' (NU) limits are not quite
as strong.

ε' = +1

ε' = -1



  

Three­Flavour approach
● In the three-flavour case, the effective Hamiltonian becomes

● One drawback of this model is that as εeτ → 0, eigenstates revert back 
to the vacuuum ones, and there is no ability to constrain εee.

● Example distributions: εee=0, εeτ=0, εττ=0  and  εee=0, εeτ=0.2, εττ=0.2



  

Three­Flavour Results
● Results given at fixed εee for εeτ and εττ , θ23 and Δm2

23 integrated out.

● Modern values of θ13 and the SK III-IV dataset should result in some 
improvements of these constraints.



  

Lorentz Invariance Violation 
search



  

Introduction
● Violations of Lorentz invariance are predicted at the Planck scale by a 

variety of models, such as space-time foam interactions.

● The Standard Model Extension (SME) adds to the Standard Model
all possible Lorentz-Violating (LV) terms.

– Terms may be directional
(indicating a preferred spatial
direction) or isotropic.

– Neutrino oscillations are a
sensitive probe of these
coefficients.

● In this analysis, we focus
on isotropic coefficients
(effects relating to L and E).



  

Oscillations
● The neutrino Hamiltonian (3-flavour oscillation, matter and LV terms):

– Unlike NSI, the new terms are not matter effects.

– Diagonal terms cannot be observed.

● Perturbation method on the Hamiltonian was found to be 
inappropriate over the large range of L and E in the SK dataset.

– First analysis to use the exact diagonalization of H.



  

P(ν
μ
   → ν

μ
) Oscillations

Standard 3-flavour

= 10-22 = 10-22



  

Sensitive Samples



  

Results
● No evidence of LV.

– Limits set on the isotropic LV 
parameters in the eµ, µτ, and eτ 
sectors.

● First limits in the µτ sector.
● aT limits improved by ~3 orders of 

magnitude
● cTT limits improved by ~7 orders of 

magnitude.



  

Summary



  

Results
● LIV violation 

– Limits set on the isotropic LV parameters in eµ, µτ, and eτ sectors.
● First limits in the µτ sector.
● aT and cTT limits in other sectors improved by orders of 

magnitude.
● NSI

– Limits on real parts of εeτ, εμμ, εμτ, and εττ.

● Sterile Neutrinos

– Limits on |Uμ4|2 and |Uτ4|2

● at MeV scale (15~100 MeV range).
● at eV scale, limits in the 3+1 case

– extensions to 3+N shown.



  

Backup
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Same philosophy, 
more samples

Most samples 
binned in angle & 

energy

FC µ FC µ

FC π0

FC e FC e

FC e

FC µ

FC µ PC µ PC µ

FC π0

FC e νe FC e νe FC e νe

FC e νe

Up µ

Up µ Up µ



  

Sterile Neutrino ­ Basic Theory

PMNS



  

Current Limits
● Previous limits on the parameter                 (~2 years old)

– Red line is a limit using public SK data, by T. Asaka and A. 
Watanabe     (not a Super-K collaboration paper).[3]



  

Flux Simulation
● In summary, we will simulate the expected number of heavy-neutrino 

decays detected in SK, using modifications to the atmospheric 
neutrino flux simulation by M. Honda    (and detector response by 
Monte-Carlo).

● Heavy neutrino creation in the atmosphere:

– The creation is similar to the muon (anti-)neutrino, subject to the 
extra mass requirements.

– Each creation of a muon neutrino in the simulation can be 
reweighted, e.g. for muon decay:

where

– Similar reweighting for pion & kaon decays.

[3]

[4]



LSND
νµ->νe 

PRL110, 161801 (2013)

νe Appearance at 1 m/MeV?
• LSND

– Anti-νe appearance in a stopped-π beam

– L ~ 30 m, E ~ 30 MeV ->  Δm2 ~ 1 eV2 

• Not consistent with other 
oscillation measurements

Alex Himmel 47

PRD81, 052004 (2010)



νe Appearance at 1 m/MeV?
• MiniBooNE

– νe and anti-νe appearance, different beam

– L ~ 500 m, E ~ 500 MeV

• Does not confirm LSND, 
but does not exclude 
sterile oscillations

Alex Himmel 48

LSND
νµ->νe 

PRL110, 161801 (2013)

MiniBooNE
νµ->νe



νe Disappearance at 1 m/MeV?

• Reactor anti-νe 

flux recalculated 
in 2010

• With the new flux, 
most short-baseline 
reactor experiments 
have deficits
– Ravg = 0.927 ± 0.023

– L ~ 10-100 m

– E ~ 5 MeV

Alex Himmel 49
PRD83, 073006 (2011)



νe Disappearance at 1 m/MeV?

• Another anomaly in 
Gallium-based solar 
experiments

• Gallex and SAGE used 
radioactive calibration 
sources 51Cr and 37Ar 

• The rates from these 
sources were, again, 
lower than expected.
– Ravg = 0.87 ± 0.05

Alex Himmel 50



Sterile Vacuum Results

• Best fit: |Uµ4|2 = 0.016
– Shown as solid line at right

– Dashed line shows fit without 
minimizing systematics

• All of the χ2 improvement 
at best fit is in systematics.
– Fit is systematically limited

Alex Himmel 51

Sub-GeV µ-like, 1 decay-e

Multi-GeV µ-like

Showering Up-
µ

Systematic No 
Steriles

Best Fit

νμ/νe flux, E < 1 
GeV

-0.52σ -0.07σ

νμ/νe flux, E 1-10 
GeV

-0.50σ -0.11σ

CCQE νμ/νe 0.38σ -0.01σ



  

Approximations



  

Approximations



  

“Heavy” Sterile Neutrinos
● A state                  is separated from the oscillation effects.

● The phenomenology varies depending on the mass, and in some 
cases we may have observable decay products.

– For example, take 
● Motivated by e.g. νMSM - standard Seesaw mechanism, but 

Majorana masses       are chosen below electroweak scale.

with left-handed leptons      , Yukawa couplings      , and Higgs    .



  

Flux Simulation
● Decay of the heavy neutrino:

– Approximately 12% of the decays are in the visible mode.



  

Flux Simulation
● Thus, we can estimate the probability of a heavy-neutrino to decay to 

the visible mode inside of SK, depending on the mass, travel distance 
to SK, and         . 

– For this plot, we set
                     .

– It can be seen that there will
be a dependence on travel
length that gets stronger
with increasing mass.

● In SK, this means a zenith
angle dependence of the
signal.

– A similar dependence is
seen for          for a fixed
mass.



  

2D distributions
● Events are binned in 2d.

– Not actually the final binning (can't find those plots...)

Background (atmospheric MC)   Signal (sterile decay)



  

Fitting Procedure
● A fit is performed for           separately at each mass point.

– The binning of the zenith & invariant mass distributions was 
optimized using the Monte-Carlo.

– For this study, 44 (21) systematic errors from the SK MC are 
applicable to the atmospheric background MC (sterile MC).

● The fit is a    -minimization, with systematic errors included in the fit 
using the method of penalty terms (“error pulls”).



  

Detection Efficiency
● Some event displays at 30 MeV
→ detection efficiency is ~25%,
    but mis-reconstruction rate
    is also a little high.
 



  

Final Fit to Data
● An example fit at sterile mass = 50 MeV, shown by final analysis bins
→ Data / MC comparison at best-fit point, and 90%-confidence
     exclusion point



  

Justification for Simplified Matrix Element
● From previous limits, electron-mixing is ruled out at 2-3 orders of
 magnitude below muon- mixing (thanks to double-beta decay
 experiments), so seems negligible.

● Atmospheric decays (from Pion, Kaon, Muon) involve the charged
 current, so Tau mixing cannot be involved (in this energy range).

● Sterile decay can involve a Tau, with the same channels as Muon, so
 the final results can be interpreted instead as a limit on
 sqrt
 



  

More Phenomenology
● Pion decay rates

● Kaon decay:
 K± → mostly 2-body decays (as the pion decay)

  K0 → 3-body decay
           Just using an approximation
           for this one...
 



  

More Phenomenology
● Extension to higher sterile masses fairly simple using just W / Z 
 branching ratios
 → would have to consider more decay samples in the analysis
 



  

Other Possible Variables
● Use inner angle as a separation variable

● Need to use e.g. Poisson likelihood due to low events per bin.
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Two­flavour approach

● Survival probability is somewhat complicated



Calculation of LV Oscillation 
Probabilities

Alex Himmel 67

Hamiltonia
n:

Eigenvalue
s:

Special Thanks:

J.S. Diaz of IU



Calculation of LV Oscillation 
Probabilities
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Hamiltonia
n:

Eigenvalue
s:

Special Thanks:

J.S. Diaz of IU



Calculation of LV Oscillation 
Probabilities
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Hamiltonia
n:

Eigenvalue
s:

Special Thanks:

J.S. Diaz of IU
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