Resonant Neutrino Self-Interaction with $U(1)_{L\mu-L\tau}$ Model

AYUKI KAMADA (UC Riverside) in collaboration with Hai-bo Yu (UCR)

@第28回宇宙ニュートリノ研究会

"Dip" in IceCube

Possible Interpretation

Sources w/ $\phi(E) \propto E^{-2}$

- Astrophysical (GRB, SNR)
- Cosmogenic (pp, pγ...)
- New Physics (DM decay, annihilation)

Origins w/ dip

Statistical fluctuation

 -a few events expected (2σ consistent)

This talk

• New Physics (neutrino interactions)

How does neutrino selfinteraction work?

High energy neutrino deposits their energy in cosmic neutrino background

Exclusive for subPeV

Only **subPeV** neutrinos interact effectively

10 MeV mediator implied!!

Well-motivated model

U(1)_{Lμ-Lτ}

Gauging (muon number - tau number) $\nu_{\mu}(+1), \nu_{\tau}(-1)...$ anti-particles(opposite sign) couple with Z'-boson (m_{Z'}~10MeV!!)

Advantages

- Anomaly-free (well-defined theory)
- natural explanation of maximal mixing for atmospheric neutrino $\theta_{23} \sim \pi/4$
- No experimental difficulty

 (e.g. beam-dump experiment)
 unlike U(1)_{Le-Lμ}, U(1)_{Le-Lτ}

Muon g-2

Measured muon anomalous magnetic moment (g-2) deviates from standard model prediction

 $\Delta a_{\mu}(exp) = a_{\mu}(exp) - a_{\mu}(SM)$ $a_{\mu} = (g-2)/2 \sim 0.001$ $=(42.6 \pm 16.5) \times 10^{-10}$ μ Z'-boson exchange contribution $\Delta a_{\mu}^{Z'} = \frac{g'^2}{8\pi^2} \int_0^1 dx \frac{2m_{\mu}^2 x^2 (1-x)}{x^2 m_{\mu}^2 + (1-x)m_{Z'}^2}$ Gauge coupling of g'~10⁻⁴ can fill the gap!!

$$\simeq 1 \left(\frac{g'}{2.5 \times 10^{-5}} \right)^2$$

T. Araki et al. 2014

Gauge coupling of g'~10⁻⁴ is also sufficient to explain dip in IceCube!!

Is this brilliant story true?

Neutrino oscillation I

Neutrinos change their flavors during oscillations

Neutrino oscillation II

Even starting with v_e 's, only **a part of** v's can reach us

Cosmological/Astrophysical Aspects

Cosmology of 10 MeV Z'-boson I

Important question: When is Z' decays?

Core Collapse SN

SN1987A

This 10s determines the duration of neutrino cooling

M. Nakahata 2007

Core Collapse SN w/ Z'

Diffusion time w/ Z'

For g'~10⁻⁴ (good for Muon g-2, IceCube dip)

Mean free path $\lambda \sim 0.01$ cm

Diffusion time t~ 10^5 s >> 10s (SN1987A)

Only v_e 's contribute to SN cooling

Notion

- More detailed study needed to conclude...
- Some additional cooling mechanism of core (e.g. axion, hidden photons)

Prediction

Only v_e 's are emitted from SN

Super Kamiokande

Important hint of this scenario

Summary

