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emission modelling in progress with Ruo-Yu Liu (MPIK) 	



Fast winds in active galactic nuclei as sources of	


ultra-high-energy cosmic rays	


The answer, my friend, is…	




composition: Auger, ICRC 2015	
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Similar trend for both 
models:

heavier composition at 
low energies 

(largest mass dispersion), 
lightest one at � 2x1018 

eV, getting heavier again 
towards higher energies 

(smaller mass dispersion)
[N.B: very few data 
above � 40 EeV)
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Porcelli #420

Not only inferences on 
mass but test of models too
The conversion to �2(lnA) 

through QGSJETII-04 
yields unphysical results

highlight talk by Piera Ghia	
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Meta-analysis: Composition WG 

TA data cannot 
distinguish 
between mix and 
QGSJETII-03 
protons at this 
level of systematic 
uncertainty. 

[618 - PoS 307]  
Parallel CR07 EAS mass  
Track: CREX, Presented by 
Michael UNGER 
on 31 Jul 2015 at 14:00  
Unger et al, PoS 307 

composition: TA, ICRC 2015	
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“The TA measurements, dare I say it,�is 
consistent with a light composition.”	


	


「信じてもらえないかもしれないが、TAの測定値は
軽い組成と無矛盾、と言っておこう。」	




AGN jets as UHECR sources	


high-power (FR 2) objects	

 low-power (FR 1) objects	


hot spot: clear accel. site BUT	


too few <1 within D~<100 Mpc	


non-proton composition?	



relatively numerous BUT	


accel. site?	


 inner jet-> low B? escape?	


non-proton composition?	





ultra-fast outflows (UFOs) in AGN 	



Giustini+ 11�

blue-shifted X-ray absorption lines	

- ~40 % of all AGNs	


  both radio-quiet/radio-loud 	


- fast outflow: v~0.05-0.3c	


- highly ionized:	


  Fe XXV/XXVI	


  ξion~103-106 erg s-1 cm	



- high column density:	


  NH~1022-1024 cm-2	



- variable: tvar>~ks	





ultra-fast outflows (UFOs) in AGN 	



Tombesi+ 13 �

velocity	


vs radius �

Lkin vs Lrad �- R~0.0003-0.03 pc	


    (~10-104 Rg)	


- M~0.01-1 Msun/yr	


  Lkin~0.01-1 LEdd	


- broad opening angle ~<100 deg	


- independent of relativistic jet	


accretion disk winds	


formation mechanisms:	


thermal?	


radiation (continuum or line)?	


magnetic?	


hybrid (thermal+radiation,	


  radiation+magnetic)?... �

.	




collisionless shocks in AGN winds	



Faucher-Giguere	


& Quataert 12 �

Bourne & Nayakshin 13 �

2T structure?�

Compton upscattered X-rays	


from shocked thermal plasma	


potentially observable �

- mechanical/thermal feedback	


  on host galaxy gas	


   -> origin of MBH - σbulge correlation?	


- particle acceleration and	


  nonthermal emission?	



Rsh,ex~0.1pc -few kpc�
external shocks	


internal shocks	

observed variability of X-ray lines	


-> internal inhomogeneities	


-> internal shocks possible, Rsh,in~few Rg-Rsh,ex	




observable signature of AGN wind external shock	


also Nims+ 15	



Bourne & Nayakshin 13 �

2T structure?�

Compton upscattered X-rays	


from shocked thermal plasma	


potentially observable �

internal shocks	

observed variability of X-ray lines	


-> internal inhomogeneities	


-> internal shocks possible, Rsh,in~few Rg-Rsh,ex	


Probing gaseous galaxy haloes 841

Figure 3. Dependence of outflow hydrodynamics and emission on baryon fraction in the disc fd. We fix Mhalo = 1012 M! and z = 1.0. Panels (a) and (b)
show the shell velocity and radio synchrotron flux at 1 GHz as a function of radius. The dotted and dashed vertical lines mark the position of Rdisc and Rvir,
respectively. The upper x-axis of panel (b) marks the angular diameter of the outflow shock. Panel (c) shows the radio synchrotron flux as a function of time.
The dashed vertical line corresponds to the point when the AGN shuts off. Time is scaled to the Hubble time tH on the upper x-axis. Panel (d) demonstrates the
momentum flux boost of the shell. The solid lines represent the numerical result, while the dashed lines correspond to predictions in the energy-driven regime.
Panels (e) and (f) illustrate snapshots of non-thermal emission power and flux at Rdisc and Rvir, respectively. The solid, dashed and dotted lines correspond to
synchrotron emission, IC scattering of accretion disc photons and CMB photons, respectively.
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Wang & Loeb 15 �

R=5.88 kpc�

R=147 kpc�

radio, X-ray	


observable	


by future facilities	


->	


probe of SMBH	


feedback in action �

->	


UHECRs as	


consequence of	


SMBH feedback?�



wind shocks: electron & proton acceleration 	


main parameters	


 vout, Lnuc: observed	


 Le, Lp < Lkin: obs. constrained	


 Rs: few Rg- Rbulge	


 Bs (εB= B2/8π / Lkin/4π R2 vout)	

dynamical time tdyn=R/vout, tlc=Rs/c=500 s	


acceleration time tacc~10 (vs/c)-2 E/ceB	



Liu & SI	


in prep. 	


electron loss time	


 tesyn=3 me

2c3/4σTuBEe	


 teIC=3 me

2c3/4σTuphEe   uph~uext	



external radiation field   follows Ghisellini & Tavecchio 09	


 accretion disk+broad line region+dusty torus	

	


proton loss time	


 tpp=(κppσppnpc)-1	


 tpγ ∝ ∫ κpγ(x)σpγ(x)x dx ∫ nph(x)dx)-1 x=hv/mec2	
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acceleration vs. cooling	

 vout=0.1c, Lkin=1045 erg/s	


Rs=0.1 pc, Bs~3G(εB~1) -> np~5x103 cm-3	



E [GeV]	


t/tlc	


tdyn	

tacc	
teEC	


tesyn	


electrons up to ~1 TeV, cooling for ~<10 MeV  NB: γγ	


protons up to ~3x1018 eV, Fe up to ~1020 eV	
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acceleration vs. cooling	

 vout=0.01c, Lkin=1045 erg/s	


Rs=100 pc, Bs~3mG(εB~1)	



E [GeV]	


t/tlc	


tdyn	


tacc	
teEC	
 tesyn	


protons up to ~3x1018 eV (Fe up to ~1020 eV)	


(electrons up to ~PeV)	




UHECR sources: acceleration	



UHECR	


note: top-down models	


strongly constrained by EGB	



nonstandard physics	


(topological defects, superheavy DM,	


EHE ν Z-bursts, …	


UHECRons, broken Lorentz invar., …)	



less motivation…	



GRBs	



AGN jets	



clusters	



adapted from	


Yoshida & Dai 98	



E ≦ Ze B R (v/c)	



R	



B	



B~∝R-1	



“Hillas plot”	

 E ≦ Ze B R (v/c)	


confinement	



acceleration vs:	

Emax	


escape	


source lifetime	


adiab. expansion loss	


radiative loss	



L > (2cΓ2/βεBe2)(E/Z)2	


   =1045.5 erg/s	


      (Γ2/βεΒ)(E/Zx1020eV)2	



Waxman 03	



B2/8π=εBL/4πR2Γ2βc ->	


power limit	



magnetars	



UHECRathlon	



old favorite: AGNs	


leading contender: GRBs	


dark horse: magnetars	


                     clusters, etc.	



upsets do occur…	



AGN winds	





UFO AGN skymap	

The locate of analyzed AGN sample 

Energy : 0.1-100 GeV
period of analysis : 2008/8/4-2014/9/30

NB: far from a uniform sample of such objects	




summary	


- widespread existence of powerful, mildly relativistic	


  baryonic(ionic) outflows in AGN, independent of rel. jets	


- collisionless external shocks	


  “action site” of SMBH feedback onto host galaxies	


   potential particle acceleration site	


- potential sources of UHECRs	


   - acceleration OK IF B~Beq	


   - number, energetics OK	


   - guaranteed Fe composition	


   - direct consequence of SMBH feedback	



AGN winds as UHECR sources	


- more detailed modeling in progress	


- potential PeV neutrino sources if internal shocks occur	


  near nucleus (~wind launching site)	
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acceleration vs. cooling	

 R=0.001 pc -> Beq~300 G, np~5x107 cm-3	



E [GeV]	


t/tlc	


tdyn	


tacc	


teEC	


tesyn	


electrons only to ~100MeV NB: internal photons, γγ	


protons up to ~1016 eV, limited by photomeson -> ν,n emission	


tpγπ	


tpγe+-	




potential consequences of near-nucleus pγ interactions	


no UHECRs, no GeV-TeV emission but:	


- non-thermal X/MeV emission	


- TeV-PeV neutrino emission <-> IceCube results	


  -> broad-line region from neutrino-heated stars?	


- TeV-PeV neutron injection	


  -> decay back to protons within 1-100 pc, CR-driven wind?	


  -> mass loading of jets?	



Kazanas & Protheroe 83, Zdziarski 86, Sikora+87, Rudak+ 89, Begelman+ 90	


Mannheim & Biermann 89, Stecker+ 91, Atoyan 92, Szabo & Protheroe 92…	



revival of “old ideas”	


(but with more concrete prospects for proton acceleration)	



