## Fast winds in active galactic nuclei as sources of ultra-high-energy cosmic rays Susumu Inoue (RIKEN), Ruo-Yu Liu (MPIK) Kohta Murase (Penn State)



The answer, my friend, is... blowin in the wind



## **composition:** Auger, ICRC 2015 highlight talk by Piera Ghia



## composition: TA, ICRC 2015 highlight talk by Charlie Jui Meta-analysis: Composition WG



#### [618 - PoS 307]

Parallel CR07 EAS mass Track: CREX, Presented by Michael UNGER on 31 Jul 2015 at 14:00 Unger et al, PoS 307

TA data cannot distinguish between mix and QGSJETII-03 protons at this level of systematic uncertainty. composition: TA, ICRC 2015 highlight talk by Charlie Jui

"The TA measurements, dare I say it, is consistent with a light composition."

# 「信じてもらえないかもしれないが、TAの測定値は 軽い組成と無矛盾、と言っておこう。」



TA data cannot distinguish between mix and QGSJETII-03 protons at this level of systematic uncertainty. AGN jets as UHECR sources high-power (FR 2) objects hot spot: clear accel. site BUT too few <1 within D~<100 Mpc non-proton composition?



low-power (FR 1) objects
relatively numerous BUT
accel. site?
inner jet-> low B? escape?
non-proton composition?



## **ultra-fast outflows (UFOs) in AGN** blue-shifted X-ray absorption lines

- ~40 % of all AGNs
  both radio-quiet/radio-loud
- fast outflow: v~0.05-0.3c
- highly ionized: Fe XXV/XXVI  $\xi_{ion} \sim 10^3 - 10^6 \text{ erg s}^{-1} \text{ cm}$
- high column density: N<sub>H</sub>~ $10^{22}$ - $10^{24}$  cm<sup>-2</sup>
- variable: t<sub>var</sub>>~ks



## ultra-fast outflows (UFOs) in AGN

- R~0.0003-0.03 pc  $(\sim 10-10^4 R_g)$ - M~0.01-1  $\dot{M}_{sun}/yr$  $L_{kin}\sim 0.01-1 L_{Edd}$
- broad opening angle ~<100 deg
- independent of relativistic jet

## accretion disk winds







C)

## collisionless shocks in AGN winds

#### ambien mediun shocked external shocks wind Vin $R_{sh.ex} \sim 0.1 pc$ -few kpc QSO ¥ - mechanical/thermal feedback on host galaxy gas -> origin of $M_{BH}$ - $\sigma_{bulge}$ correlation? Rsw - particle acceleration and nonthermal emission? $R_c$ Faucher-Giguere Rs & Quataert 12

 $T_{\mathrm{p,e}}$  (K)

### observable signature of AGN wind external shock

Wang & Loeb 15 also Nims+15



radio, X-ray observable by future facilities -> probe of SMBH feedback in action

 $T_{\mathrm{p,e}}$  (K)

UHECRs as consequence of SMBH feedback?

6

### wind shocks: electron & proton acceleration

main parameters  $v_{out}, L_{nuc}$ : observed  $L_e, L_p < L_{kin}$ : obs. constrained  $R_s$ : few  $R_g - R_{bulge}$  $B_s (\epsilon_B = B^2/8\pi / L_{kin}/4\pi R^2 v_{out})$ 

dynamical time  $t_{dyn}=R/v_{out}$ ,  $t_{lc}=R_s/c=500$  s acceleration time  $t_{acc}\sim 10 (v_s/c)^{-2}$  E/ceB

Liu & SI in prep.





### **UHECR sources: acceleration**



E ≤ Ze B R (v/c) confinement
E acceleration vs:

escape source lifetime adiab. expansion loss radiative loss

## UFO AGN skymap



### NB: far from a uniform sample of such objects

### summary AGN winds as UHECR sources

- widespread existence of powerful, mildly relativistic baryonic(ionic) outflows in AGN, independent of rel. jets
- collisionless external shocks
   "action site" of SMBH feedback onto host galaxies potential particle acceleration site
- potential sources of UHECRs
  - acceleration OK IF B~Beq
  - number, energetics OK
  - guaranteed Fe composition
  - direct consequence of SMBH feedback
- more detailed modeling in progress
- potential PeV neutrino sources if internal shocks occur near nucleus (~wind launching site)



electrons only to ~100MeV NB: internal photons,  $\gamma\gamma$ protons up to ~10<sup>16</sup> eV, limited by photomeson -> v,n emission

## potential consequences of near-nucleus py interactions

no UHECRs, no GeV-TeV emission but:

- non-thermal X/MeV emission
- TeV-PeV neutrino emission <-> IceCube results
   -> broad-line region from neutrino-heated stars?
- TeV-PeV neutron injection
  - -> decay back to protons within 1-100 pc, CR-driven wind?
    -> mass loading of jets?

## revival of "old ideas"

(but with more concrete prospects for proton acceleration)

Kazanas & Protheroe 83, Zdziarski 86, Sikora+87, Rudak+ 89, Begelman+ 90 Mannheim & Biermann 89, Stecker+ 91, Atoyan 92, Szabo & Protheroe 92...