The Galactic Center region imaged with MAGIC

variability during the G2 pericenter passage

Christian Fruck, John E. Ward, Marcel Strzys, Ievgen Vovk
fruck@mpp.mpg.de
Tokyo - October 2015
The MAGIC telescopes

- Imaging Air-shower Cherenkov Telescopes for observing γ-rays from 50 GeV to 50 TeV
- Located on the Roque de los Muchachos (at 2200 m a.s.l.) on the Canary island La Palma
- Two 17m diameter parabolic dish, $F/D = 1.03$, telescopes
- Photomultiplier (PMT) cameras with 1039 pixels each
- Support structure from carbon fiber, allowing for fast repositioning (180° in about 20 s)

Image credit: Robert Wagner
The Galactic Center: in 20cm, 1.1mm, IR

- GC hosts Super Massive Black Hole (SMBH) \((4 \cdot 10^6 M_\odot)\)
- very dense and active astrophysical environment
- considered good place to search for DM annihilation/decay

image source: http://images.nrao.edu
G2 gas cloud falling onto the Galactic Center

- report about a **gas cloud of three times the Earth mass** on its way to SgrA* (S. Gillessen et al. 2012)

- pericenter passage 2013-2014, \(\approx 2000 \) Schwarzschild radii (S. Gillessen et al. 2013) (\(\approx 25 \) light hours or \(20 \times \) Saturns semi major axis)

- possible that part of the cloud interacts with the SMBH

\(\Rightarrow \) **monitoring** campaigns triggered in nearly all wavelengths (**radio to \(\gamma \) rays**)

![Image source: ESO](image.jpg)

The Galactic Center region imaged with MAGIC and variability during the G2 pericenter passage
Possible observable effects in an interaction scenario:

- Formation of a hot accretion disk
 - Production of thermal X-rays (*X-ray satellites*)
- Production of energetic electrons (in shock/jet/magnetosphere)
 - Synchrotron radiation from Radio to X-ray from energetic electrons
 (Radio telescopes, *X-ray satellites*)
 - Bremsstrahlung and/or Inverse Compton scattering of high energy e^-
 (*γ ray satellite observatories, ground based γ ray observatories*)
- Acceleration of protons and heavy nuclei (shock/jet/magnetosphere)
 - π^0 production in interaction of hadronic cosmic rays
 (*γ ray satellite observatories, ground based γ ray observatories*)

- So far no enhanced variability in other wavelengths
- Monitoring of SgrA* with MAGIC at high zenith angles
- Observations in 2012, 2013, 2014 and 2015 ($\sim 65h$ very good quality)
- Culmination at $\sim 58^\circ$ zenith distance
- Observation at large zenith distance ($58^\circ - 70^\circ$) with all advantages and disadvantages (light pool size vs. light dilution, enhanced absorption ...)
- Energy threshold increase by factor of the order 10
- Effective collection area increasing by about the same factor
- Good, because in case of hadronic acceleration/diffusion scenarios fastest reaction expected in multi TeV regime (D. R. Ballantyne, M. Schumann, B. Ford, 2011)
Light curve: any observable effect of the G2 flyby?

- **MAGIC light curve** for the central point-like (SgrA*) source: $E > 2 \text{ TeV}, E > 5 \text{ TeV}$
- Integration radius 0.14° around SgrA*
- Only very good quality 2012/13/14/15 data ($\sim 65h$)
- Flux compatible with constant in all energy bands
- Linear fit does not show significant improvement of χ^2
- Also no reports about unusual flux variability in other wavebands

The Galactic Center region imaged with MAGIC and variability during the G2 pericenter passage

Christian Fruck
Light curve: any observable effect of the G2 flyby?

- **MAGIC light curve** for the central point-like (SgrA*) source: $E > 2 \text{ TeV}, E > 5 \text{ TeV}$
- Integration radius 0.14° around SgrA*
- Only very good quality 2012/13/14/15 data (∼65h)
- Flux compatible with constant in all energy bands
- Linear fit does not show significant improvement of χ^2
- Also no reports about unusual flux variability in other wavebands

![Graph showing MAGIC light curve for the central point-like (SgrA*) source.](image)

- Preliminary
Spectral Energy Density (SED) of SgrA*

- MAGIC SED compared to other previous measurements
- Integration radius 0.14° around SgrA*, $\sim65h$ of very good quality 2012/13/14/15 data
- Power law with exponential cutoff fit (forward folding):
 \[
 \frac{dF}{dE} = (7.92 \pm 0.98) \text{cm}^{-2} \text{s}^{-1} \text{TeV}^{-1} \left(\frac{E}{2 \text{TeV}}\right)^{-1.86 \pm 0.13} \exp\left(-\frac{E}{8.49 \pm 2.89} \text{TeV}\right)
 \]

The Galactic Center region imaged with MAGIC and variability during the G2 pericenter passage

Christian Fruck

Preliminary
Adding 2015 Fermi data and comparing to models

- peculiar 2-bump structure – none-trivial for modeling
- hadronic scenarios are exploiting morphology (target) and time variability (source)
- leptonic models have problems explaining the spectral shape with single source
- the available data does not yet allow discrimination of models
Sky map (∼65h) 2012/13/14/15 (E ≥ 1 TeV)

- 2.25 × 2.25 deg FoV, Galactic Plane from bottom right to top left
- TS value map (left)
- excess in units of background \((N_{on} - N_{off})/N_{off}\) with significance contours starting from 5σ (right)
- strong point-like contributions from the locations of SgrA* and G0.9+0.1
Sky map (~65h) 2012/13/14/15 ($E \gtrsim 1\,\text{TeV}$)

- point source model fitted and subtracted from SgrA* location
- $2.25 \times 2.25\,\text{deg FoV}$, Galactic Plane from bottom right to top left
- TS value map (left)
- excess in units of background $\frac{N_{\text{on}}-N_{\text{off}}}{N_{\text{off}}}$ with sign. contours starting from 3σ (right)
- New source MAGIC J1746.4-2853
- possible coincidence with HESS J1746-285 and VER J1746-289
Sky map (~65h) 2012/13/14/15 ($E \gtrsim 1$ TeV)

- point source model fitted and subtracted from SgrA* location
- 2.25 × 2.25 deg FoV, Galactic Plane from bottom right to top left
- TS value map (left)
- excess in units of background $\frac{N_{on}-N_{off}}{N_{off}}$ with sign. contours starting from 3σ (right)
- New source MAGIC J1746.4-2853
- possible coincidence with HESS J1746-285 and VER J1746-289

The Galactic Center region imaged with MAGIC and variability during the G2 pericenter passage

Christian Fruck
Origin of the extended emission

- good correlation between 90 cm radio image and TeV skymap ($E \gtrsim 1$ TeV)
- G0.9 is known TeV source (Aharonian et al., 2005)
- detected significant TeV gamma-ray excess apparently coincident with the radio Arc
- MAGIC source is coincident with the Fermi source 3FGL J1746.3-2851c
- Bremsstrahlung from cosmic electrons interacting with MCs? (Yusef-Zadeh et al., 2013)

Conclusions

- Large Zd $\sim 60-70^\circ$ observation technique with MAGIC very successful!
- SED over more than 2 orders of magnitude with only 65h of data.
- **No variability** in the TeV regime during the closest encounter of the GC with the G2 gas cloud
 - Maybe the gas did not reach the accretion zone yet?
 - Or the accretion is radiation inefficient?
 - Or the gas cloud is very compact (e.g. star with stellar wind)?
 - Seems to be the case, because the cloud is still intact after passing the pericentre arXiv:1410.8731).
- **New TeV source**: the GC radio Arc – source type still unknown, could be PWN, CR-MC interaction or SNR shell interacting with magnetic structure of the Arc
- Very complex and interesting region now being actively studied by MAGIC, H.E.S.S. and VERITAS
- Stay tuned!

Thanks for your attention!
Backup
PSF Model subtracted from Crab Nebula sky map

The Galactic Center region imaged with MAGIC and variability during the G2 pericenter passage

Christian Fruck

15 / 13
GC region in 20cm, 1.1mm, IR

- VLA (20cm): H II regions that are illuminated by hot, massive stars, supernova remnants, and synchrotron emission
- Caltech Submillimeter Observatory (1.1mm): cold (20-30 K) dust associated with molecular gas
- Spitzer (IR): primarily emission from stars and from polycyclic aromatic hydrocarbons

image source: http://images.nrao.edu
Radio sources SgrA and SgrA*

- bright point-like radio source
- at the center of SgrA-West (Mini-Spiral)
- at the edge of SNR SgrA-East
- thought to be SMBH
- from stellar motions: \(\approx 4 \cdot 10^6 \, M_\odot \)

Image source (right): astro.ucla.edu
few 10 OB stars confined inside the central arc-sec around SgrA*
star S2 periastron: 120 AU, period: 15.6 y

For a Crab-like spectral index!