High Energy Neutrino Astronomy

AYA ISHIHARA CHIBA UNIVERSITY

Outline

Introduction

- Diffuse neutrinos
- Neutrino point sources
- Searches for higher energy neutrino components
- What's the next?

High energy neutrinos

Neutrino as a cosmic messenger Weak interaction during "propagation" > Penetration power

Pointing capability

Making neutrinos

5

Simple hadronic "creation"

Simple modeling ingredients

- pp or py interaction
- cosmic-ray and target spectra in source

Accompanying partners

- gamma-ray from neutral pions
- Parent cosmic-rays
- Multi-messenger !

$$E_{\nu} \approx \frac{1}{20} E_P \approx \frac{1}{2} E_{\gamma}$$

Neutrino detectors

Neutrino Telescopes need to be large

- Benchmark 1km³ scale for a few neutrino events/year expected from CR observation
 - Natural photon-transparent materials as Cherenkov medium and neutrino beam dumping

Detection Principle

An array of photomultiplier tubes + Dark and transparent material

Cherenkov light

High energy neutrino detection channels

Diffuse neutrino spectra

Diffuse neutrino flux: Powerful tool to search abandant sources

- Accumulate neutrinos from many sources even at very far Universe, or very weak. Different direction or timing, and of different types
- Diffuse flux give hints to build a better point source observation strategy

$$\phi_{\rm diffuse}\left(E|L,z\right) = \int \int \int \phi_{\rm single}\left(E|L,z\right) \frac{d^2 n(L,z)}{dz \, dL} dz \, dL \, d\Omega$$

unresolved week sources

Thursday 29th Neutrino parallel: IceCube Diffuse flux By J. Van Santen

far sources

Upward-going muon channel

12

MC expectations

Select well reconstructed upward going tracks

•

Physics 7, 88 (2014)

high statistics atmospheric v well confined from data

Dominate over astronomical v signal upto ~100 TeV

Upward-going muon channel

13

Data:2010-2012 (2 years) fit results Phys. Rev. Lett. 115, 081102 (2015)

Updates on up-muon analysis

14

1. Previously separately analyzed 2009-2010 data and 2010-2012 2 year data are combined (ICRC2015)

2. Then 3 more years of the full IceCube are added (results at this conference)

Thursday 29th Neutrino parallel session talk By S. Schoenen

Highlights:

- Glowing significance: $1.8\sigma(1y) \rightarrow 3.7\sigma(2y) \rightarrow 4.3\sigma(3y) \rightarrow 5.9\sigma(6y)$
- Consistent level of fluxes with reduced error
- Highest neutrino energy event (2.6±0.3 PeV energy deposit)

15

Starting event channel

- Use outer layer of IceCube detector as muon veto
 - Updated from previous publication (3 year sample, PRL 113, 101101) with additional one year of data
 - Glowing significance: $4.1\sigma(2y) \rightarrow 5.7\sigma(3y) \rightarrow 6.5\sigma(4y)$
 - Increasing number of events: $28(2y) \rightarrow 36+1(3y) \rightarrow 53+1(4y)$
 - No new over PeV event

Starting event channel

Compared to the previous publication (Phys. Rev. Lett. 113, 101101), a softer spectra preferred while consistent within error

3 year sample, PRL 113, 101101

Best fit spectral index was 2.30±0.3 (3y) and now 2.58±0.25 (4y)
 Energy threshold ~60GeV

Lower energy extension of analysis down to 1TeV! PRD 91 022001 (2014) <u>Thursday 29th Neutrino parallel: IceCube Diffuse flux By J. Van Santen</u>

No clustering observed

The most significant cluster p-value 58% with all events, 44% with shower events

Cascade channel

18

produces cascade-like signatures

topological selection of cascade events

Cascade channel is complementary to upward muon channel

- Good energy resolution of ~10%
 - log(E)~0.3 for muon energy deposit to muon neutrino energy
- Directional resolution is ~10°
 - ~0.5° for muons
- Less atmospheric neutrino background
 - atm muons reach to ground before decaying
 - turn over energy from BG to signal is lower; sensitive to lower energy region (10TeV – 100TeV)
 - upward muon analysis sensitive above ~100TeV
- Sensitive to full sky

2 year cascade analysis

Data:2010-2012 (2 years) fit results

- Observed 172 events (energies 10 TeV 1 PeV) 60% are not overlapping with the other channel
- **BG** only obpothesis is rejected at 4.7σ
- Best fit spectral index (soft) $\gamma = 2.67^{+0.12}_{-0.13}$

A best fit flux comparison

- Results are consistent
- Keep eye on the insignificant 2_o level of tension between cascade and upward muon analysis

What abut their sources?

Neutrino point source search

How to improve point source sensitivity

- Livetime, detector size (cross section of detector in the direction to the object)
 - sqrt(N) <u>Monday 26th Neutrino parallel: KM3NeT By V. Van Elewyck</u>
- Angular resolution Friday 30th Plenary: The next generation neutrino telescopes By J. Kelley
 - linear
- Background veto
 - Down BG: atm muons, UP BG: atm nu
 - Surface veto can reduce down muon BG from Southern sky for IceCube
 - Monday 26th Neutrino parallel: astrophysical neutrino search with IceCube surface veto By D. Tosi
- Stacking of the "right" class of object
 - Hints from diffuse neutrinos, point source upperlimits and gamma-ray observations
- Multimessenger
 - Trigger telescopes by neutrino for transient sources

Point source search

22

Important factors

 muon track angular resolution

- source position in the sky
 - Southern sky: High energy atm muon BG (Signal PeV-EeV)
 - Northern sky: Atm neutrino BG (signal TeV-PeV)

Moon shadow of cosmic ray muons using one year of data (cosmic-ray primaries get absorbed in

moon)

ANTARES in Sea water

Water:

Shorter light absorption length Less light scattering

Important factors

- muon track angular resolution
- cascade angular resolution
- source positions in the sky
 - lower energy threshold for galactic sources

Tracks

 $0.4^{\circ} \pm 0.1^{\circ}$ median resolution

Cascades ~3° median resolution IceCube cascades (Median angle 8~10°)

IceCube point source with 6 years of sample

South	า
-log ₁₀ (p)	4.74
Post-Trial	87%
ns	19.4
γ	2.3

Full sky scan

No significant clustering observed

Upperlimits from 6 year point source search

25

Northern sky upperlimits (<10 9 GeV cm⁻² s⁻¹) Southern sky upperlimits (<10 8 GeV cm⁻² s⁻¹)

Antares point source update with cascade

Most significant cluster at $\alpha = -48.3^{\circ}$ $\delta = -64.6^{\circ}$

p-value is 18.5%

Upperlimit from Antares track+cascade PS search

<10⁸ GeV cm⁻² s⁻¹ in the Southern sky

27

~30% improvement from track only

Stacking source analysis

Motivation

Do FERMI-LAT blazars all or certain sub population contribute to the diffuse signal?

arXiv:1501.05301

The cumulative neutrino flux from FERMI-LAT blazar populations

arxiv:1502.03104 Northern sky: TeV < E_v < PeV

Southern sky: E_v>PeV

simple modeling

or

All sources are equal
$$(w_{model,j}=1)$$

$$\mathbf{v}_{lum.} \propto \mathbf{y}_{lum.}$$
 $(\mathbf{w}_{model, j} \propto \mathbf{y}_{lum., j})$

FERMI blazar stacking results

	p-values		
	$w_{source} \propto F_{\gamma}$	$w_{source} = 1$	No. of sources
All 2LAC Blazars	36 %	6 %	862
FSRQs	34 %	34 %	310
LSPs	36 %	28 %	308
ISP/HSPs	>50 %	11 %	301
LSP-BLLACs	13 %	7 %	62

- No significant excess
- The smallest p-value is 6% for the "All 2LAC Blazar"

Upperlimits on diffuse flux contribution assuming parameterization in ApJ 720:435 (2010)

Search for Neutrino fluxes from the Fermi Bubble

- In the previous 4 year analysis, average 11 bg and 16 found (1.4σ)
- Additional year sample combined, average 13 bg and 22 found (1.9σ)

Flux above 10 PeV

Cosmogenic neutrino search by air shower detector

Extremely high energy v search with IceCube

EHE neutrino search with IceCube have been updated with 6 years of IceCube sample (April, 2008-May, 2014) Effective livetime of 2014 days

- Updated 7 year results soon to come
- Multi-channel analysis looking for any type of events with a large energy deposit
- One partially contained upward-going cascade observed in Nov 16, 2012 data
 - Preliminary estimate of energy deposit: 770 TeV (NPE=74300)
 - Vertex position close to the outer most layer of optical sensors
 - Atmospheric origin rejected at 99.3%CL
 - Inconsistent with GZK v at 99.2%CL

Tight upperlimits on GZK models are placed and constrains the UHE cosmic-ray sources!

GZK model dependent and independent upperlimits

35

6 year model hypothesis tests including the 1 event observation *90%CL					
Models	event rates /livetime	p-values	Model dependent UL*		
Ahlers Fermi max fit (10EeV transition)	8.6 events	0.05%	0.35 times model flux		
Ahlers Fermi best fit (10EeV transition)	4.2 events	3%	0.7 times model flux		
Kotera FRII dip model	11.7 events	0.002%	0.3 times model flux		
Kotera SFR dip model	2.8 events	16.6%	1.2 times model flux		

quasi-differential upperlimits

model dependent upperlimits

Constraints on high energy astrophysical sources

There are not only of cosmogenic origin, extragalactic objects such as AGNs can produce neutrinos above >10PeV

Model hypothesis tests including the 2 events observation

Models	event rates /livetime	p-values Mo	odel dependent UL 90%CL
astroMuraseAGN2_0(A)	12.3 events	< 0.1%	0.3 times model flux
astroMuraseAGN2_3(A)	0.61 events	90%	5.8 times model flux
astroKePulsarSFR(B)	21.2 events	< 0.1%	0.2 times model flux
astroKePulsarUniform(B)	3.6 events	7.9%	1.0 times model flux

These models describing current IceCube flux are strongly constrained

Still possible origin for high energy low level new components

(A)Diffuse neutrino intensity from the inner jets of active galactic nuclei: Impacts of external photon fields and the blazar K. Murase et al. Phys Rev D 90 023007 (2014) (B)Testing the newborn pulsar origin of ultrahigh energy cosmic rays with EeV neutrinos Ke Fang, Kumiko Kotera, Kohta Murase, and Angela V. Olinto Phys Rev D 90 103005 (2014)

Cherenkov radio detection of neutrinos The Askaryan Radio Array (ARA) detector

Monday 26th Neutrino parallel: Results and prospects from ARA By M. Duvernois Monday 26th Neutrino parallel: ARA detector calibration By R. Gaior

Upperlimits from the first partial ARA detector

Working as expected!

Neutrino Astronomy by Aya Ishihara @ TeVPA 2 $\!arOmega$

39

Summary

- We have observed cosmic-neutrino flux (spectral index varies -2.7 ~ -2.2)
 - Is tension between different analysis hint of energy threshold dependence? 100TeV-PeV flux softer below ~50TeV
- Upperlimits
 - Northern sky PS upperlimits (<10⁹ GeV cm⁻² s⁻¹), Southern sky (<10⁸ GeV cm⁻² s⁻¹)
 - Blazer (sub components, all)
 - Galactic components (<50%, Ahlers etal arXiv:1505.03156)
 - Stay tuned for Fermi Bubble
 - GRB: No more than 1% GRB prompt contribution to IceCube diffuse flux (IceCube: ApJ 805 LS 2015)
 - AGN models to produce >10PeV neutrinos
- Extragalactic diffuse gamma-ray
 - Small room for neutrino objects (Soft neutrino spectra below ~50TeV)
 - Not p-p neutrinos?
 - Non-blazer, non-GRB pγ sources?
- Good potential multi-wavelength follow up of the IceCube events (especially transit)
- Cosmogenic neutrinos must be there for some level
 - If not pure proton, radio detector is needed for iron/mixed composition

