LAPTh

Recent cosmic-ray anomalies and their interpretations

Antje Putze LAPTh/LAPP

Disclaimer:

- Non-exhaustive list of models (and references)
- Recent examples given

Outline

anomaly /ə'nɒm(ə)li/: something that deviates from what is standard, normal, or expected

[Dictionary]

- What do we expect?
 → Diffusion model
- What deviates from our expectations?
 → Fluxes at GeV energies
- What can cause these deviations?
 → Propagation, acceleration, sources
- How can we test these hypotheses?
 → Multi-messenger approach

diffusive shock acceleration

diffusive shock acceleration

II. Propagation in the ISM diffusion, convection, re-acceleration secondaries

primaries

3

diffusive shock acceleration

II. Propagation in the ISM diffusion, convection, re-acceleration secondaries

primaries

III. Solar System & Detection solar modulation, geomagnetic cut-off

3

diffusive shock acceleration

II. Propagation in the ISM diffusion, convection, re-acceleration secondaries

power law

primaries

III. Solar System & Detection solar modulation, geomagnetic cut-off

Cosmic-ray transport equation

Parameters and observables

The most important parameters are linked to

- the acceleration mechanisms injection spectrum: $Q(R) \propto q R^{-\alpha}$
- the propagation mechanisms diffusion: $K(R) \propto K_0 R^{\delta}$ convection: V_C re-acceleration: V_A

lpsc.in2p3.fr/cosmic-rays-db

What do we expect?

featureless and universal power-law energy spectra

[Boyle & Müller, PDG (2014)]

What do we see? Hints of a broken power law

7

[Ahn et al., ApJL (2010)]

What do we see? Hardening confirmed

8

s sr GeV/n)- $^1 \times (GeV/n)^{2.7}$ $Flux \times E^{2.7}$ (m²

What do we see? Non-universality: Δγ ~ 0.1

What do we see? Universality for Z > 1?

What do we see? Rise in the positron fraction

[Olive et al., PDG (2014)]

Hardening also seen in the individual electron and positron fluxes

What do we see? Anomaly in antiprotons?

What can cause these anomalies?

Propagation Two halo model

Assuming two halos ($z \le 500$ pc) with different diffusion properties

2L 2h

explains hardening of nuclei and electron fluxes

fails to explain the positron flux/positron ratio
no parameters predicted a priori

Propagation Non-linear coupling

Cosmic rays diffuse on

- self-generated waves at low energies
- external turbulences (e.g., SNRs) at high energies

fails to explain the preliminary AMS-02 B/C ratio

Acceleration Evolution of the Mach number

explains non-universality and change of slopes of energy spectra

no clear break but smooth change of spectral slopes
no evident reason for early (late) helium (proton) acceleration

talk by Ohira

Sources Dark matter

[Boudaud et al., A&A (2015)]

explains lepton fluxes and positron fraction

needs large boost factors

in tension with other observables (antiprotons, gamma rays, CMB)

Sources Nearby and young sources

explains hardening in nuclei fluxes
explains lepton fluxes and positron fraction

needs small diffusion halos

Testing the different hypotheses

Hardening

Propagation

more pronounced break in secondaries \rightarrow hardening in B/C

Acceleration

same hardening in primaries & secondaries \rightarrow no feature in B/C

• Discrete local sources "bumpy" spectra

Non-universality

spectral indices of nuclei

Conclusion

- More and more precise cosmicray data will be available soon
 Discrimination between model classes needs O(10%) precision at 1 TeV/nuc for firm conclusion!
- Multi-messenger approach necessary for individual model discrimination gamma ray flux, anisotropy
- Current propagation models suffer from large uncertainties on ingredients and hypotheses What you get out depends on what you put in...

Are you hunting for dark matter?

 Your dark matter candidate should reproduce all the available data
 → global fits
 → GAMBIT