Energy Spectrum Measured by the Telescope Array Experiment in 10^{15.6} eV to 10^{20.3} eV Range

Toshihiro Fujiifor the Telescope Array CollaborationKICP, University of ChicagoICRR, University of Tokyofujii@kicp.uchicago.eduOctober 26th, 2008

R.U. Abbasi^a, M. Abe^b, T. Abu-Zayyad^a, M. Allen^a, R. Azuma^c, E. Barcikowski^a, J.W. Belz^a, D.R. Bergman^a, T. Goto^k, W. Hanlon^a, Y. Hayashi^k, N. Hayashida^l, K. Hibino^l, K. Honda^m, D. Ikedaⁱ, N. Inoue^b, T. Ishii^m, R. Ishimori^c, H. Itoⁿ, D. Ivanov^a, C.C.H. Jui^a, K. Kadota^o, F. Kakimoto^c, O. Kalashev^p, K. Kasahara^q, H. Kawai^r, S. Kawakami^k, S. Kawana^b, K. Kawataⁱ, E. Kidoⁱ, H.B. Kim^e, J.H. Kim^a, J.H. Kim^s, S. Kitamura^c, Y. Kitamura^c, V. Kuzmin^{p,2}, Y.J. Kwon^h, J. Lan^a, S.I. Lim^d, J.P. Lundquist^a, K. Machida^m, K. Martens^j, T. Matsuda^u, T. Nonakaⁱ, A. Nozato^g, S. Ogio^k, J. Ogura^c, M. Ohnishiⁱ, H. Ohokaⁱ, K. Okiⁱ, T. Okuda^x, M. Ono^y, A. Oshima^z, S. Ozawa^q, I.H. Park^{aa}, M.S. Pshirkov^{p,ab}, D.C. Rodriguez^a, G. Rubtsov^p, D. Ryu^s, H. Sagawaⁱ, N. Sakurai^k, A. Taketa^{ad}, M. Takitaⁱ, Y. Tameda^l, H. Tanaka^k, K. Tanaka^{ae}, M. Tanaka^u, S.B. Thomas^a, G.B. Thomson^a, P. Tinyakov^{af,p}, I. Tkachev^p, H. Tokuno^c, T. Tomida^{ag}, S. Troitsky^p, Y. Tsunesada^k, K. Tsutsumi^c, Y. Uchihori^{ah}, S. Udo¹, F. Urban^{af}, G. Vasiloff^a, T. Wong^a, R. Yamane^k, H. Yamaoka^u, K. Yamazaki^{ad}, J. Yang^d, K. Yashiro^f, Y. Yoneda^k, S. Yoshida^r, H. Yoshii^{ai}, R. Zollinger^a, Z. Zundel^a

S.A. Blake^a, R. Cady^a, M.J. Chae^d, B.G. Cheon^e, J. Chiba^f, M. Chikawa^g, W.R. Cho^h, T. Fujii^{i,1,*}, M. Fukushima^{i,j}, T. Matsuyama^k, J.N. Matthews^a, M. Minamino^k, Y. Mukai^m, I. Myers^a, K. Nagasawa^b, S. Nagatakiⁿ, T. Nakamura^w, L.M. Scott^{ac}, P.D. Shah^a, F. Shibata^m, T. Shibataⁱ, H. Shimodairaⁱ, B.K. Shin^e, H.S. Shinⁱ, J.D. Smith^a, P. Sokolsky^a, R.W. Springer^a, B.T. Stokes^a, S.R. Stratton^{a,ac}, T.A. Stroman^a, T. Suzawa^b, M. Takamura^f, M. Takedaⁱ, R. Takeishiⁱ,

^aHigh Energy Astrophysics Institute and Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah, USA ^sDepartment of Physics, School of Natural Sciences, Ulsan National Institute of Science and Technology, UNIST-gil, Ulsan, Korea ^bThe Graduate School of Science and Engineering, Saitama University, Saitama, Saitama, Japan ^tHigh Energy Astrophysics Institute and Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah, USA ^cGraduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo, Japan ^{*u*}*Institute of Particle and Nuclear Studies, KEK, Tsukuba, Ibaraki, Japan* ^dDepartment of Physics and Institute for the Early Universe, Ewha Womans University, Seodaaemun-gu, Seoul, Korea ^vHigh Energy Astrophysics Institute and Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah, USA ^eDepartment of Physics and The Research Institute of Natural Science, Hanyang University, Seongdong-gu, Seoul, Korea ^wFaculty of Science, Kochi University, Kochi, Kochi, Japan ^fDepartment of Physics, Tokyo University of Science, Noda, Chiba, Japan ^xDepartment of Physical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan ^gDepartment of Physics, Kinki University, Higashi Osaka, Osaka, Japan ^yDepartment of Physics, Kyushu University, Fukuoka, Fukuoka, Japan ^hDepartment of Physics, Yonsei University, Seodaemun-gu, Seoul, Korea ^zEngineering Science Laboratory, Chubu University, Kasugai, Aichi, Japan ^{*i*}Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba, Japan ^{aa}Department of Physics, Sungkyunkwan University, Jang-an-gu, Suwon, Korea ^{ab}Sternberg Astronomical Institute, Moscow M.V. Lomonosov State University, Moscow, Russia Chiba, Japan ^{ac}Department of Physics and Astronomy, Rutgers University – The State University of New Jersey, Piscataway, New Jersey, USA ^kGraduate School of Science, Osaka City University, Osaka, Osaka, Japan ^{ad}Earthquake Research Institute, University of Tokyo, Bunkyo-ku, Tokyo, Japan ¹Faculty of Engineering, Kanagawa University, Yokohama, Kanagawa, Japan ^{ae}Graduate School of Information Sciences, Hiroshima City University, Hiroshima, Hiroshima, Japan ^mInterdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Kofu, Yamanashi, Japan ^{af}Service de Physique Théorique, Université Libre de Bruxelles, Brussels, Belgium ⁿAstrophysical Big Bang Laboratory, RIKEN, Wako, Saitama, Japan ^{ag}Department of Computer Science and Engineering, Shinshu University, Nagano, Nagano, Japan ^oDepartment of Physics, Tokyo City University, Setagaya-ku, Tokyo, Japan ^{*ah*}National Institute of Radiological Science, Chiba, Chiba, Japan ^pInstitute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia ^{ai}Department of Physics, Ehime University, Matsuyama, Ehime, Japan ^qAdvanced Research Institute for Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan ^rDepartment of Physics, Chiba University, Chiba, Chiba, Japan ¹Now at University of Chicago, USA

^jKavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, the University of Tokyo, Kashiwa,

Japan, USA, Korea, Russia, Belgium

²Deceased

Telescope Array Experiment (TA) Largest cosmic ray detector in the Northern hemisphere ~ 700 km² at Utah, USA

Surface Detector Array

Fluorescence detector at MD station Refurbished from HiRes experiment, Spherical mirror 5.2 m^2 , 256 PMTs/camera, 14 telescopes

Fluorescence detector + Surface detector array

Fluorescence Detector at BRM and LR stations 507 Scintillator, 1.2 km spacing Spherical segment mirror (6.8 m²) + 256 Photomultiplier tube(PMTs)/camera, 12 newly designed telescopes

Telescope Array Experiment (TA) Surface detector array (SD) Fluorescence detector (FD)

Clear moonless night ~10% duty operation Feb'11 Jun'15

7 Years Steadily Operation Surface detector array (SD) Fluorescence detector (FD) ~100% duty operation Mar'08

... to Observe Extensive Air Shower (EAS) induced by Ultra-High Energy Cosmic Ray (UHECR)

Image credit: ASPERA_Novapix_L.Bret

Observed UHECR Event Surface detector array (SD) Fluoi Time [4µS] **30**⊦ Observe $\frac{30}{25}$ Observe lateral longitzidimal density develgpment distribution Reconstruct Charge density calorimetric⁴⁰ at 800 m, S₈₀₀ as 80 50 60 70 energy energy indicator Azimuth angle [degree] 10 11 East [1200m] \rightarrow Data 350 χ^2 /ndf = 235.0/329 (0.7) SD LDF Fit Fluorescence 300 **Direct Cherenkov Rayleigh Scatterd (** sity, [VEM/ 250 **Mie Scattered** 200 150 Numbe 100 сĥа E 50 800 m **500** 700 800 600 900

Perpendicular distance from shower axis, [1200m]

Slant Depth (g/cm²)

Monte Carlo simulation

Some and zenith angle. $sec(\theta)$

Energy Spectrum from TA FD and SD

Item	Uncertair
Fluorescence	11%
Atmosphere	11%
Calibration	10%
Reconstruction	9%
Total	21%

Comparison with Other Measurements

20.5 20

Consistent with the HiRes result in a broad energy range

Consistent with TA MD result

8.5% difference with Auger result around ankle, however consistent within systematics uncertainty.

Discrepancy on the Suppression

Figure 4.12: 3D view of the SSD module with t using lifting lugs present in the tank structure.

Even if we correct the energy difference, the suppression shows large discrepancy above $10^{19.3}$ eV.

Possible reasons of discrepancy: fluorescence yield, atmospheric model, missing energy correction, detector: scintillator or water-tank, Northern/Southern hemisphere.

TA×4 : fourfold statistics at the suppression

Water-tank installed at TA site

4.2.7 Calibration and control system

The SSD calibration is based on the signal of a minimum ionizing particle going through the detector, a MIP Since this is a thin detector, the MIP will not necessarily be well separated ICRC 2015 from the low energy background but, being installed on top of the WCD, a cross trigger can be used to remove all of the background. About 40% of the calibration triggers of the

Further Lower Energy = TALE (Telescope Array Low-energy Extension)

- > 10^{17.4} eV Fluorescence dominated
- < 10^{17.4} eV Cherenkov dominated

Resolution and Exposure as a Function of Energy

Comparison with other Measurements

Summary and Future Plans

- TA measured the energy spectrum over 4.7 orders of $\frac{1}{2}$ magnitude in $10^{15.6}$ eV to $10^{20.3}$ eV range.
- 4 features seen: low energy ankle at 10^{16.34} eV, 2nd Ş knee at $10^{17.30}$ eV, ankle at $10^{18.72}$ eV, suppression at $\hat{\omega}$ $10^{19.80} \, \mathrm{eV}$
- Example 2 Large discrepancy with Pierre Auger above 10^{19.3} eV, which cannot be resolved by rescaling energies of the experiments.
- TAx4 will provide us fourfold statistics at the suppression.

Activities to understand the suppression discrepancy.

4.2.7 Calibration and control system The SSD calibration is based on the signal of a minimum ionizing particle going through th

 10_{175}^{-1}

Auger South

log (E/eV)

- TA Combined 2015

18.5

Auger ICRC 2013 +8.5%

 $\log_{10}(E (eV))$

19.5

Preliminary

