Blazars as Cosmic-Ray Sources

Kohta Murase Penn State University

TeVPA 2015 @ Kashiwa

Cosmic Background Radiation

Cosmic non-thermal budgets? - cosmic-ray origin, cosmic v origin, cosmic γ origin

Cosmic Background Radiation

Cosmic non-thermal budgets? - cosmic-ray origin, cosmic v origin, cosmic γ origin

Blazars: Main Extragalactic Sources in the y-ray Sky

48 months of observations : 2192 TS>25, |b|>10° sources 3LAC: 1563 sources 1444 AGNs in the clean sample 415 FSRQs 602 BL Lacs 413 of unknown type 23 other AGNs

Local (z=0) luminosity density

BL Lacs:

2x10⁴⁵ erg Mpc⁻³ yr⁻¹ FSRQs:

~(1-4)x10⁴⁴ erg Mpc⁻³ yr⁻¹

UHECR:

~10⁴⁴ erg Mpc⁻³ yr⁻¹

Candidate sources of UHECRs

Blazars: Success of Multiwavelength Observations

Spectral energy distribution (SED): "two hump" structure

Leptonic Scenario

HE radiation: relativistic electrons accelerated in inner jets (magnetic reconnection, shock acc., shear acc., turbulence etc.)

• Basic tool: one-zone syn./SSC model w. syn. self-absorption and internal γγ

- For EIC: bloadline regions (BLR), dust torus, (scattered) accretion disk
- Complicated injection spectrum (intrinsic spectral break & low max. energy)
- Log-parabolic function works well: stochastic acc.? (ex. Tramacere+ 11)

Lepto-Hadronic Scenario

- Nonthermal synchrotron radiation from primary electrons for radio through optical (low-energy hump)
- Proton and ion synchrotron radiation $p{+}B \rightarrow \gamma$
- Photomeson production $p\gamma \rightarrow \pi^0, \pi^{\pm} \rightarrow \gamma, \nu, n, e^{\pm}$
- Neutrons escape to become UHECRs
- Hadronuclear process $p+N \rightarrow \pi^0, \pi^{\pm} \rightarrow \gamma, \nu, n, e^{\pm}$ ("heavy" jet problem; Atoyan & Dermer 03)

"SEDs can be fitted by both leptonic and lepto-hadronic scenarios"

Smoking gun?

- neutrinos

- detailed studies of γ-ray spectra

- X-ray & γ-ray polarization (Zhang& Bottcher 13)

Blazar Sequence & py Efficiency

Maximum CR Energy

- ~10% of AGN have powerful jets (radio-loud): n_s ~10⁻⁴ Mpc⁻³ Most of them are FR I galaxies and BL Lacs
- **Hillas condition:** E_A^{max}=ZeB'TR' nearby FR I & blazars seen by Fermi

ID	Source	d_L	$E_A^{\max{(t)}}/Z[10^{19}]$
		[Mpc]	[eV]
1	CenA(core)	3.7	0.004-3.3
2	M87	16.7	0.040
3	NGC1275	75.3	4.6
4	NGC6251	104	0.27
5	Mrk421	130.0	0.29
6	Mrk501 (h. ^(g) ,1997)	146.0	0.17-1.5
7	Mrk501 (1. ^(g) ,1997)	146.0	0.28-1.5
8	Mrk501 (1. ^(g) ,2007)	146.0	0.2
9	Mrk501 (1. ^(g) ,2009)	146.0	0.12-0.6
10	1ES1959+650(h. ^(g))	206	0.12-2.9
11	1ES1959+650(1. ^(g))	206	1.3
12	PKS2200+420/BL Lac	307.0	1.1
13	PKS2005-489	316.0	3.1
14	WComae	464.0	0.37-0.57
15	PKS2155-304	533.0	0.23

KM, Dermer, Takami, & Migliori 2012 ApJ

Hillas condition typically gives $E_p^{max} \sim 10^{18} \cdot 10^{19} \text{ eV}$ for BL Lacs $E_p^{max} \sim 10^{20} \text{ eV}$ for FSRQs but py losses are relevant for FSRQs

Some Remarks on CR Acc. in Blazars

- BL Lacs can accelerate heavy nuclei up to ~10²⁰ eV FSRQs are more powerful but pγ cooling limits the max. energy
- Auger results suggest heavy nuclei at UHE energies nucleus survival: OK in BL Lacs but not in FSRQs (KM+ 12, 14) open question: how heavy nuclei are loaded in AGN jets hard injection spectra (s<2) are suggested (Taylor+ 15)
- UHECRs from most blazars should be largely isotropized otherwise strong anisotropy was observed (Takami, KM & Dermer 14) (or acceleration region is not beamed as in radio galaxies)
- UHECR-AGN hypothesis does not mean the lepto-hadronic scenario does not mean they give the main origin of IceCube neutrinos

HE Neutrinos from AGN Jets

Standard jet models as the cosmic v origin: difficult, many constraints...

- Blazars: power-law CR spectra → hard spectral shape (KM, Inoue & Dermer 14) point-source limits & correlation studies (KM & Waxman 15, IceCube Coll. 15)

Can We Play a Game?

Kalashev, Kusenko & Essey Dermer, KM & Inoue 14 Tavechhio & Ghisellini 14

Can blazars explain IceCube data? Yes but...

- Only PeV data unless multi-zone models are invoked

- Need cutoff at 10¹⁷ eV to avoid UHE upper limits (stochastic acc.?)

Can blazars explain UHECRs? Yes but IceCube vs have a different origin

- pγ w. BLR & dust-torus photons: cross-corr. w. known <100 bright quasars

- UHECR norm. (reasonable) \rightarrow EeV ν detectable by ARA & GRAND

Possible VHE Anomaly in Weakly Variable Blazars?

Extreme VHE Blazars: Challenge?

De-absorbed spectrum is as hard as s~1-1.5 Almost mono-energetic electron distribution is needed Suggested values of B seem much smaller (e.g., Tavechhio+ 11)

Have been used to constrain intergalactic fields in voids Cascade component appear as a GeV excess? (e.g., Vovk+ 12)

Intergalactic Cascade Emission?

Alternative scenario:

neutrino and hadronic gamma-ray production outside sources

Predictions for VHE Gamma-Ray Spectra

Many models: buy classified into two distinct features in VHE spectra

Smoking Gun: High-Energy Tail of Distant Blazars

- go to higher energies and/or higher redshifts (\rightarrow CTA) - weak variability $\Delta t_{IGV} \simeq 14 \text{ yr } E_{\gamma,11}^{-2} B_{IGV,-17}^2 (\lambda_{BH}/\text{Gpc})(1+z)^{-1}$

Variable Hadronic Cascade Emission: UHE Neutral Beams

Application to Blazars

Accretion Disk

FSRQ 4C+21.35 (z=0.432) >30 GeV γ rays (made inside BLR) are damped (e⁻³⁰~10⁻¹³) but fast variability w. ~10 min (Tanaka+ 11, MAGIC Coll. +11)

"a very compact emission region outside BLR"

R'~10¹⁵ (Γ /100) cm << 10¹⁷ cm

Alternative explanations:

- Minute-scale echo produced by UHE neutral beams

(Dermer, KM & Takami 12)

- Axion-like particles

(Tavecchio+ 12)

Dermer, KM & Takami 12

Summary

- Blazars & radio-loud AGN have been promising UHECR sources dominant sources of the luminosity density in the γ-ray band
- Leptonic vs lepto-hadronic
 both can explain SEDs (though more literature in leptonic)
- HE neutrinos start to give crucial tests for CR ion acc. in AGN explaining the IceCube data w. blazars seems challenging simultaneous UHECR explanation: tough in standard models
- Extreme blazars: hints of intergalactic cascade emission? CTA, HESS-II: crucial tests for primary γ-ray vs CR-induced
- Fast-variability could be produced by UHE neutral beams

Can UHECR be the Main Origin of Isotropic Diffuse Gamma-Ray Background

Cosmogenic γ can contribute to diffuse γ -ray background Steeper than spectra of preliminary Fermi data

$$\lambda_{\rm IC} = 400 \rm kpc \left(\frac{E_{\rm pri}}{1 \, {\rm TeV}}\right)^{-1} \qquad CMB, \ CIB$$

$$E_{\rm sec} = 3 \rm GeV \left(\frac{E_{\rm pri}}{1 \, {\rm TeV}}\right)^{2}$$

$$E_{\rm sec} = 3 \rm GeV \left(\frac{E_{\rm pri}}{1 \, {\rm TeV}}\right)^{2}$$

$$M_{\rm rec} = 200 \rm Mpc \left(\frac{n_{\rm IR}}{0.01 \, \rm cm^{-3}}\right)^{-1}$$

$$H_{\rm ext} = 0.07^{2} \left(\frac{E_{\rm sec}}{3 \, {\rm GeV}}\right)^{-1/2} \left(\frac{B}{10^{-17} \rm G}\right) \left(\frac{n_{\rm IR}}{0.01 \, \rm cm^{-3}}\right)^{-1}$$

$$\Delta_{T} = 60 \rm day \left(\frac{E_{\rm sec}}{3 \, {\rm GeV}}\right)^{2} \left(\frac{n_{\rm IR}}{10^{-19} \rm G}\right)^{2} \left(\frac{n_{\rm IR}}{0.01 \, \rm cm^{-3}}\right)^{-1}$$

blazar no halo \rightarrow B > 10⁻¹⁶ G, blazar flare no echo \rightarrow B > 10⁻²⁰ G

The Fate of Gamma Rays

CR beams can be isotropized by many reasons

- structured magnetic fields (cluster: ~ μG) (filament: ~ 10 nG)
- radio bubbles/lobes (~ mG)
- plasma instabilities oblique Broderik+ 12, Shlickeiser+ 13 but see Mianiti & Elyiv 13 CR streaming KM+ 12

If isotropized, CR luminosity exceeds

$$L_{\rm Edd,abs} = \frac{4\pi G M_{\rm BH} m_p c}{\sigma_T} \simeq 1.3 \times 10^{46} \, {\rm erg \, s^{-1}} \left(\frac{M_{\rm BH}}{10^8 \, M_{\odot}}\right)$$

UHECR "Isotropy" Problem

Takami, Murase & Dermer 14