Mini-EUSO: Measurement of the Earth's UV background emission from the ISS as a pathfinder for the JEM-EUSO mission

Oscar Larsson Riken

TeV Particle Astrophysics Conference

29 October 2015

Scientific Objectives

→ High res. Earth UV bg
→ Moon phase dependence
→ Night time UV mapping

Atmospheric Phenomenon

Meteoroids

Technological Objectives

- The second second
- → 2) Optimisation of characteristics and performance of EUSO
- → 3) Raise the technological readiness level of the hardware and software

Technical Specifications

- → Dimensions
 BxHxL: 35x35x60 cm³
- → Mass
 - 30 kg
- Power
 - 30 W
 - 28 V (ISS Supply)
- → Data
 - SSD storage
 - No Up/Down Link
 - Crew Rotation

Technical Specifications

- → 1 Photo-Detection Module PDM
 - 36 MAPMTs → 2304 pixels
 - 300-400 nm
- → 2.5 µs time resolution
 Shower development
 Fast/Slow events
- → 2 Fresnel lenses 25 cm
 ±19 deg FoV
 - $~60 000 \text{ km}^2$
- IR/VIS Cameras
 Atmospheric monitoring
- Protective Iris
 - Local night time operations

O. Larsson TeVPA 2015

Expected Results

High resolution UV map

Expected Results

Computer simulated 10²¹ eV air shower as would be observed by Mini-EUSO

Ground based laser operations will simulate these types of events when in the FoV of Mini-EUSO

ISS

~400 km

Space Debris Remediation

Space Debris Remediation

- NORAD provides data of known debris in FoV of Mini-EUSO (a few – termination line between dark and light)
- Look for unknown debris (includes meteors for this purpose)
- →Laser shooting from Ground to Mini-EUSO (CSM - US)
 - Laser shooting debris (difficult)

Demonstration designs for the remediation of space debris from the International Space Station

Toshikazu Ebisuzaki ^{a,e}, Mark N. Quinn^b, Satoshi Wada^a, Lech Wiktor Piotrowski^a, Yoshiyuki Takizawa^a, Marco Casolino ^{a,c}, Mario E. Bertaina^{c,d}, Philippe Gorodetzky^e, Etienne Parizot^e, Toshiki Tajima^{b,f}, Rémi Soulard^b, Gérard Mourou^b

⁸ RHER, 2-1, Hiracawa, Wako 351-0198, Japan ⁹ IZB57, Ecole Polytechnique, 91208 Palisteau, France ^c INRV, Structure of Rome Tor Vergan, Vad al dale Nierras Scientifica 1, Rome, Italy ^d University of Torino, Via P. Ciaria, 1 20125 Torino, Italy ^d APC-ORKS/Paris? University, 1 rate A. Domonet L. Daquet, 75013 Paris, France ^f Department of Physics and Astron, University of California at Irvine, Irvine, CA 32637, United States ^f Department of Physics CrossMar

Mini-EUSO time table

- → 2013
 Approved by the
 Italian Space Agency VUS/2
- → 2014
 Approved by Roscosmos
 (UV Atmosphere)
- → 2015
 Included in the
 Paolo Nespoli Mission for
 the ISS
- → 2016 Construction and integration
- → 2017 Launch to the ISS

11/13

Mini-EUSO time table

- → 2013
 Approved by the
 Italian Space Agency VUS/2
- → 2014
 Approved by Roscosmos (UV Atmosphere)
- → 2015
 Included in the
 Paolo Nespoli Mission for
 the ISS
- → 2016 Construction and integration
- → 2017
 Launch to the ISS

1074-5489-1-SP.zin

1074-5493-1-

12/13

1074-5490-1-SP.zip

Summary

- → We will place Mini-EUSO, a Fresnel based telescope, on the ISS during 2017 to observe the Earth in the UV range.
- → It is a small (25x35x60 cm³) light weight (~30 kg) telescope observing through the UV transparent window of the Zvezda module
- → Mini-EUSO will be capable of:
 - producing a high resolution UV map of the Earth
 - observing atmospheric phenomenon (TLEs, Elvs...)
 - recording meteor/meteorite data
 - searching for SQM
 - performing in-situ tests of the debris remediation system
- Raise the technological readiness level of the JEM-EUSO collaboration