The CRESST Experiment

New Results and Future Prospects

Raimund Strauss
Max-Planck-Institut für Physik
München,
TeVPA 2015, Tokyo
29.10.2015
Current Status of Direct Dark Matter Searches

The graph illustrates the current status of direct dark matter searches, showing the exclusion limits on the dark matter particle-nucleon cross section as a function of the dark matter particle mass in GeV/c². Different experiments and collaborations, represented by various colored lines, have set upper limits on the cross section for different dark matter masses. The graph includes data from CRESST-II 2014, CRESST-II 2012 Comm., CDEX 2014, CDMSLite 2014, SuperCDMS 2014, CDMS-Si 2013, CoGeNT 2013, EDELWEISS 2012, DarkSide-50 2015, LUX 2013, XENON100 2012, and CRESST-II 2015. The shaded regions represent the expected sensitivity of future experiments. Coherent Neutrino Scattering on CaWO₄ is also indicated.
Current Status of Direct Dark Matter Searches

- Cryogenic experiments
- Liquid Xe experiments
- Coherent Neutrino Scattering on CaWO₄
The CRESST Experiment

Cryogenic Rare Event Search with Superconducting Thermometers

- Underground installation
- Ultra-low background environment
- Cryogenic detectors (10-15mK)

LNGS, Italy, shielding: 3500 m.w.e.

Raimund Strauss, MPI Munich
The CRESST Detector Module
The CRESST Detector Module

CaWO$_4$ Target Crystal

- scintillating
- multi-element target
- mass: 200 – 300 g

$^{16}\text{O} \, ^{40}\text{Ca} \, ^{184}\text{W}$

In-house production and processing at our institutes

Raimund Strauss, MPI Munich
The CRESST Detector Module

Light Absorber for scintillation-light detection

- silicon-on-sapphire disc
- diameter: 40mm
- thickness: 500μm

Raimund Strauss, MPI Munich
The CRESST Detector Module

Transition-Edge-Sensors

→ 2 independent calorimeters

- **Phonon detector** (CaWO$_4$)
 - Threshold: $E_{\text{th}} \geq 300$ eV
 - Resolution: $\sigma \approx 60$-200 eV

- **Light detector** (SOS)
 - Threshold $E_{\text{th}} \approx 5$ eV

Raimund Strauss, MPI Munich
Phonon-Light Technique

Reduced light output for highly-ionizing particles → Quenching
Phonon-Light Technique

Reduced light output for highly-ionizing particles → Quenching

Quenching factors:
- O
- Ca
- W
The CRESST Detector Module

Polymeric Foil

① Highly reflective
 ➢ light collection

② Scintillating
 ➢ rejection of surface events
The CRESST Detector Module

Polymeric Foil

① Highly reflective
 - light collection

② Scintillating
 - rejection of surface events

Raimund Strauss, MPI Munich
The CRESST Detector Module

Dangerous Surface Backgrounds

\[^{210}\text{Po} \rightarrow ^{206}\text{Pb} \, (103\text{keV}) + \alpha \, (5.3\text{MeV}) \]

\(E_{\text{dep}} = 0-5.3\text{MeV} \)
\(E_{\text{dep}} \leq 103\text{keV} \)

\(\rightarrow \) Lead/alpha recoils can mimic WIMPs
\(\rightarrow \) Avoid non-scintillating materials!

Raimund Strauss, MPI Munich
STATE-OF-THE-ART

CRESST II
Recently Finished – CRESST-II Phase 2

Data-taking from July 2013 to August 2015

2014 Results: “TUM-40”
- Efficient surface-event rejection
- Best intrinsic background level
- Best overall performance

2015 Results: “Lise”
- No surface rejection
- Lowest threshold
- Factor ~2 more higher background

Final Data: Total exposure
- About 500 kg-days acquired
- Data release end of 2015
“TUM-40”: New Detector Design

- Polymeric foil + CaWO₄ sticks
 - Fully-scintillating detector housing
 - Efficient rejection of surface backgrounds

“TUM-40”: Unprecedented Radiopurity

- CaWO₄-crystal production at TU Munich
- Unprecedented radiopurity (by factor 2-10)
- Room for further improvements

Average rate: ~3.5 counts / [kg keV day]

Gamma-lines from cosmogenic activation

Excellent resolution: \(\sigma \approx 100\text{eV} \)

“TUM-40”: Unprecedented Radiopurity

- CaWO$_4$-crystal production at TU Munich
- Unprecedented radiopurity (by factor 2-10)
- Room for further improvements

All gamma lines agree within < 5eV with tabulated values !!
(not calibrated with these lines)

Average rate:
\~3.5 counts / [kg keV day]

Gamma-lines from cosmogenic activation

Excellent resolution:
$\sigma \approx 100$eV

Status 2014: “TUM-40” Results

Raimund Strauss, MPI Munich
Recently Finished – CRESST-II Phase 2

Data-taking from July 2013 to August 2015

2014 Results: “TUM-40”
- Efficient surface-event rejection
- Best intrinsic background level
- Best overall performance

2015 Results: “Lise”
- No surface rejection
- Lowest threshold
- Factor \(~2\) more higher background

Final Data: Total exposure
- About 500 kg-days acquired
- Data release end of 2015
“Lise”: Trigger Threshold

Direct measurement of nuclear-recoil energy with calorimetric detector!
“Lise”: Results 2015

CRESST-II (2014)
52kg-days
Blind analysis
Yellin, optimal interval

CRESST-II (2015)

CDMSlite (2015)

See: CRESST collab. G. Angloher et al. arXiv1509.01515

Raimund Strauss, MPI Munich
Recently Finished – CRESST-II Phase 2

Data-taking from July 2013 to August 2015

2014 Results: “TUM-40”
- Efficient surface-event rejection
- Best intrinsic background level
- Best overall performance

2015 Results: “Lise”
- No surface rejection
- Lowest threshold
- Factor ~2 more higher background

Final Data: Total exposure
- About 500 kg-days acquired
- Data release end of 2015
Final Data Release: Projections

CRESST-II (2014)
CRESST-II 500kg-days (now)
Results autumn 2015

Raimund Strauss, MPI Munich
Future of Dark Matter Searches

Performance of detectors

Coherent Neutrino Scattering on CaWO₄
NEAR FUTURE

CRESST III
CRESST-III: Low-Mass WIMP Search

Straight-forward approach for near future: CRESST-III Phase 1

Status quo

m = 250g
V = 32x32x40 mm³

Phonon threshold: $E_{th} \lesssim 500$ eV

Light-detector res.: $\sigma \approx 5$ eV

Raimund Strauss, MPI Munich
CRESST-III: Low-Mass WIMP Search

Straight-forward approach for near future: CRESST-III Phase 1

Status quo

\[m = 250g \]
\[V = 32 \times 32 \times 40 \text{ mm}^3 \]

 Phonon threshold: \[E_{\text{th}} \lesssim 500 \text{eV} \] improvement by a factor of 5-10

 Light-detector res.: \[\sigma \approx 5 \text{ eV} \] improvement by a factor of 2

Raimund Strauss, MPI Munich 28
Assumptions:

- 24g CaWO$_4$ crystal
- $E_{th} = 100$ eV
- Light detector improved by factor 2 (due to smaller volume)
- 2x more detected light: due to thin crystal
- CRESST-II radiopurity

CRESST-III Detector Prototype

CaWO$_4$ sticks (with holding clamps)

reflective and scintillating housing

light detector (with TES)

block-shaped target crystal (with TES)
CRESST-III Detector Prototype

First modules ready

CaWO$_4$ sticks (with holding clamps)

reflective and scintillating housing

light detector (with TES)

block-shaped target crystal (with TES)
First Results of CRESST-III Detector

Promising results:

- Improvement by factor 6.2 compared to best CRESST-II detector ($E_{\text{th}} = 298\,\text{eV}$)

 → Baseline noise @GS 1.8-3.0mV RMS
 → Threshold: $E_{\text{th}} = 45-60\,\text{eV}$

Design goal ($E_{\text{th}}=100\,\text{eV}$) for CRESST-III Phase 1 exceeded!
Instrumented Holder - iSticks

- Particle events in sticks
- Surface backgrounds
- Stress relaxations
- ...

CaWO$_4$ stick

CaWO$_4$ crystal

Induces degraded signal

Raimund Strauss, MPI Munich
Instrumented Holder - iSticks

- Particle events in sticks
- Surface backgrounds
- Stress relaxations
- ...

Raimund Strauss, MPI Munich
Instrumented Holder - iSticks

- Particle events in sticks
- Surface backgrounds
- Stress relaxations
- ...

Raimund Strauss, MPI Munich
Instrumented Holder - iSticks

- Instrumented Holder
- iSticks
- TES
- Full signal
- Induces degradation
- Surface backgrounds
- Stress relaxations
- Particle events in s8cks

Raimund Strauss, MPI Munich
Instrumented Holder - iSticks

Gamma event of ≈40keV in stick

Stick signal

(light signal)

Absorber signal

Raimund Strauss, MPI Munich
Timeline for CRESST-III

Phase 1:

• Prototype detectors ready
• Production of ~ 15 modules ongoing
• All parts ready by Nov 2015
• Assembly & mounting end of 2015
• Start Jan 2016
CRESST-III Phase 2

Reduce intrinsic background level of crystals!
- Growth of CaWO$_4$ crystals in-house (TUM)
- All production steps under control
- Improvement by factor 10 already achieved
- Cleaning procedure e.g. by re-crystallization, purification of raw materials

REALISTIC GOAL (in 2 years):
Reduction of background level to 10^{-2} counts /[kg keV day]
(2 orders of magnitude compared to present CaWO$_4$ crystals)
100 x 24g detectors of improved quality operated for 2 year ≈ 1000 kg-days (net)
Summary

• CRESST technology proved high potential for low-mass WIMP search
 ✓ Lowest thresholds in the field: 300eV
 ✓ Nuclear-recoil energy scale precisely known
 ✓ Background discrimination down to low energies
 ✓ Efficient rejection of surface backgrounds
 ✓ Multi-element target

• CRESST-II probed new region of parameter space for WIMP masses below 3GeV/c²

• CRESST-III has unique potential to explore low-mass WIMP region
 ✓ Threshold of <=100eV reached with prototype detector
 ✓ iStick technology to reject holder-related events

Start: Jan 2016
BACKUP SLIDES
TES of Phonon Detector

Old TES design for 300g crystals:

- **bolometric** operation
- large collection area
- strong thermal coupling to bath
- not optimized for low threshold!

Threshold $E_{th} \lesssim 500$eV reached!

Raimund Strauss, MPI Munich
TES of Phonon Detector

New TES design for 24g crystals:

- **calorimetric** operation
- Similar to CRESST light detector
- **W** film: 8 times smaller
- weak thermal coupling to bath
- large-area Al phonon collectors

Theoretical improvement: factor $5-10$ in signal/noise
Thresholds of Cryogenic Experiments

- iZip 600g
- iZip (high-voltage biased) 600g
- "TUM-40" 300g
- "Lise" 300g
- CRESST-II Phase 2, 200-300g
- CRESST-III Projection preliminary 24g
- CRESST-III design goal

EDELWEISS SuperCDMS CRESST-II CRESST-III
Efficient Veto of Surface Backgrounds

![Diagram showing recoil energy vs. light yield for various materials and processes, including \(206\text{Pb} + \alpha\), \(206\text{Pb} + \text{veto}\), and additional light.]
TUM-40: Surface Backgrounds

exposure: 29 kg-days

$^{206}\text{Pb recoils:}$
Phase 1: 8.1 events Phase 2: 0 events

Degraded alphas:
Phase 1: 6.9 events Phase 2: 0 events

Raimund Strauss, MPI Munich
Lise: Low Energy Spectrum
Lise: Detector Efficiency
Lise: Observed Events